CHAPTER

State Space
Analysis

8.1 Preview

The development of control system analysis and design can be divided into three eras.
In the first era, we have classical control theory, which deals with techniques developed
before 1950. Classical control embodies such methods as root locus, Bode, Nyquist,
and Routh-Hurwitz. These methods have in common the use of transfer functions
in the complex frequency (s) domain, emphasis on the use of graphical techniques,
the use of feedback, and the use of simplifying assumptions to approximate the time
response. Since computers were not available at that time, a great deal of emphasis
was placed on developing methods that were amenable to manual computation and
graphics. A major limitation of classical control methods was the use of single-
input, single-output (SISO) methods. Multivariable (i.e., multiple-input, multiple-
output, or MIMO) systemns were analyzed and designed one loop at a time. Also, the
use of transfer functions and the frequency domain limited one to linear time-invariant
systems.

In the second era, we have modern control (which is not so modern any longer),
which refers to state-space-based methods developed in the late 1950s and early
1960s. In modern control, system models are directly written in the time domain.
Analysis and design are also done in the time domain. It should be noted that before
Laplace transforms and transfer functions became popular in the 1920s, engineers
were studying systems in the time domain. Therefore, the resurgence of time domain
analysis was not unusual, but it was triggered by the development of computers
and advances in numerical analysis. Because computers were available, it was no
longer necessary to develop analysis and design methods that were strictly manual.
An engineer could use computers to numerically solve or simulate large systems
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that were nonlinear and time-varying. State space methods removed the previously
mentioned limitations of classical control. The period of the 1960s was the heyday
of modern controlL

That period did not last very long, however. For one thing, classical control was
already well entrenched, tested, and established. Modern control methods initially
enjoyed a great deal of success in academic circles, but they did not perform very well
in real applications. Modern control provided a lot of insight into system structure and
properties, but it masked other important feedback properties that could be studied
and manipulated using classical control. For example, a basic problem in control
theory is to design control systems that will work properly when the plant model is
uncertain. This issue is tackled in classical control using gain and phase margins; most
modern control design methods, however, inherently require a precise model of the
plant. During the third era of the 1970s and 1980s, a body of methods finally emerged
that tried to provide answers to the plant uncertainty problem. These techniques,
commonly known as robust control, are a combination of modern state-space and
classical frequency domain techniques.

For a thorough understanding of these new methods, we need to have a basic
knowledge of state space analysis. Other advanced techniques in control, such as
optimal and adaptive control, are also formulated in state space. Therefore, this
chapter presents a brief introduction to state space. Since most of the mathematics
associated with the modern approach relies heavily on matrix algebra, Appendix A
provides a brief review of matrix algebra. To appreciate the material that follows,
matrix algebra must be well understood.

8.2 State Space Representation

Up to this point in this textbook, all control systems have been represented by using
transfer functions as functions of the complex frequency variable s. That approach is
often called classical compared with the “modern” approach in which time domain
(differential) equations are used. A fundamental apparatus needed to describe a control
system in the time domain is the use of state variables. In general, a system that can
be described by an n-order linear differential equation can be defined by creating n
state variables. For example, a system whose transfer function has a second-order
denominator would require two state variables, because if

Y(s)  3(s+1)
U(s) s2+2s+4
that system can be described by

d*y dy du

— +2——+4y=3—+3

dz T g T =g o
which is a second-order linear differential equation in y. By obtaining the transfer
function, the system order is determined from the denominator. That order identifies
the number of state variables that are needed. The problem, then, is to determine those

state variables so the n choices are independent of each other.
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Figure 8.1 Creating a state-variable representation. (a) Phase and dual phase variables.
(b) Physical variables. (c) Canonical (diagonalized) variables.

Figure 8.1 shows the three common methods for selecting state variables. If the
system transfer function (but not the actual structure of the system) is available, then
we see from Figure 8.1(a) that phase or dual phase variables can be used to create
a linkage, called a simulation diagram, between the classical and the modern. Each
integrator output (as we will soon see) is defined as a state variable. If the actual system
structure is known in block diagram form (e.g., when a closed-loop system includes
compensators), the resulting simulation diagram will follow the system structure,
providing integrator outputs that have physical significance. These physical variables
might include voltage, current, velocity, and position [e.g., Figure 8.1(b)].

In either case mentioned, the ultimate result is a set of matrices. Finally, if the
matrices are available [Figure 8.1(c)], certain operations can be performed on them to
create new system matrices of a particularly simple form (providing what are called
a set of canonical state variables).

Physical variables are most closely related to real-world recognizable quantities,
while canonical variables are least related to real-world quantities and are the most
theoretical. The phase and dual-phase variables lie between the extremes of practical
and theoretical.

8.2.1 Phase-Variable Form

An important problem in control system design is the synthesis of specific transfer
functions through the interconnection of simple components, as is needed for many
of the controllers (or compensators) of the preceding chapters. Synthesis is important
also in the simulation of systems, where system behavior is predicted from a model
governed by equivalent equations. Above all, the viewpoint of synthesis leads to
fundamental techniques for system description, analysis, and design. These methods

New
system
matrices



538

STATE SPACE ANALYSIS

Writing transfer function in
Mason’s form.

are systematic, compact, and suitable for computer analysis. They are also extendable
to nonlinear and time-varying systems.

A basic component for synthesis is the integrator, a block or branch having
transmittance 1/s. A block diagram or signal flow graph composed only of constant
transmittances and integrators is termed a simulation diagram. The order of such
a system is simply the number of integrators present. Signal flow graphs are espe-
cially convenient for representing simulation diagrams because in many cases, system
transfer functions are evident by inspection, making use of Mason’s gain rule.

A transfer function that is the ratio of two polynomials in s is termed rational. If the
numerator degree is less than or equal to the denominator degree, the transfer function
is said to be proper. Any proper rational transfer function may be realized with a
simulation diagram—that is, using only integration, multiplication by a constant, and
summation operations. One very useful realization known as the phase-variable form,
is described. The development, which is in terms of a specific numerical example for
clarity, is applicable to any proper rational transfer function.

For the transfer function
—552 4+ 45 — 12 _ =5/s+ 4/s% — 12/s° P+ P+ P

T(s) = = =
) $346s2+s+3 14+6/s+1/s24+3/s3 1—Li—Ly— L

dividing the numerator and denominator by the highest power-of-s term in the denom-
inator places a 1 in the denominator and results in other numerator and denominator
terms that are inverse powers of s, representing multiple integrations. In this form
the transfer function may be interpreted as a Mason’s gain rule expression. The
numerator terms

-5 4 -12
s 52 s
are each taken to be paths through integrators, and the paths are intermingled as in

Figure 8.2(a) to require a minimum number of integrators—in this case, three. The
denominator terms

6 1 3

s + 52 + 53
are taken to be the negative of the loop gains. By placing each of these loops through
the node to which U(s) couples, all loops touch one another, so no product of loop
gain terms is involved. All the loops touch each of the paths, so each path cofactor
is unity.

In Figure 8.2(b), each integrator output signal has been labeled. These signals
are termed the state variables of the system. This realization of the example transfer
function is then described by the following Laplace-transformed equations:

1
Xi(s) =;X2(S)

1
Xa(s) =;X3(S)
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Y(s)

1 -12
Ui 1 5

Common to all paths and loops

Ui 1 l % X5(s)
® S
L

Figure 8.2 Phase-variable realization of a single-input, single-output sys-
temn. (a) Paths in the simulation diagram. (b) Complete simulation diagram.
(c) Realizing a transfer function in the dual phase-variable form.
1
X3(s) =;[—3X1(S) — X»(s) — 6X3(s) + U(s)]
Y(s) =—12X,(s) + 4X2(s) — 5X3(s)
or

5X1(s) = Xa(s)

5X3(s) = Xa(s)

5X3(s) = —3X1(s) — Xa(s) — 6X3(s) + U(s)
Y(5) = — 12X; +4X2(s) — 5X3(s)

As functions of time, the signals satisfy
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dx
d—j = —3x1 (1) — x2(t) — 6x3(2) + u()

y(t) = — 12x1(t) + 4x2(2) — 5x3(2)

which is a set of coupled first-order differential equations.
Denoting time derivatives by x, and defining the vectors x and x by

_x 1 ] x 1
X=1]Xx2 x = )22
X3 .723
allows us to rewrite the foregoing equations in matrix—vector format as follows:
State equations in *1 0 1 0)ix 0
vector-matrix form. X | = 0 0 1 |x2|+]0]|u
)'63 -3 -1 -6 X3 1
X1
y=I[-12 4 —-5]|x|+0-u
X3

or more compactly as follows:
X =Ax+ Bu
y=Cx+ Du

where the set of four matrices {A, B, C, D} are called a quadruple. In general, any
proper transfer function can be converted to the general form just shown. In fact, any
linear differential equation (possibly with variable coefficients) can be converted to
this form (in this case, the coefficient matrices may be functions of time rather than
constants).

8.2.2 Dual Phase-Variable Form

Another especially convenient way to realize a transfer function with integrators is to
arrange the signal flow graph so that all the paths and all the loops touch an output
node. For the previous transfer function
—552+4s — 12
§3+6s2+s5+3
—5/s +4/s* —12/s3

T 1+6/s+1/s2+3/53

P+ P+ P

T 1-Li—Ly— L,
for example, the diagram of Figure 8.2(c) shows this dual phase-variable arrange-

ment. The output signal is derived from a single node, while the input signal is coupled
to each integrator.

T(s) =
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The Laplace transform relations describing this system are, in terms of the
indicated state variables,

5X1(s) = —6X1(s) + Xa(s) — 5U(s)
sXo(s) = — X1(s) + X3(s) +4U(s)
sX3(s) = —3X; — 12U(s)

Y(s) = Xi(s)

or in the time domain

-6 1 0 =5
x=(-1 0 1[x+ 4 u
-3 00 —12

y=[1 0 0lx+0-u

Phase-variable and dual phase-variable forms are called canonical forms. Our
constructions always lead to a special form for the {A, B, C, D} quadruplets.
For example, in the phase-variable form, assuming that the state variables are defined
from right to left, we can observe the following patterns. B is a column vector of zeros
except the last element which is 1; C is a row vector that contains the coefficients of
the transfer function numerator in ascending powers of s. The D term is a scalar, and
is always 0 if the transfer function is strictly proper (i.e., the degree of the numerator
is strictly less than the degree of the denominator). The A matrix has a special form,
which can be partitioned as follows:

0! 1 0
A= 01 0 1
-3 -1 -6

Note that the last-row elements are the negative of the coefficients of the transfer
function denominator (in ascending powers of s, the highest-degree term is always
assumed to have a coefficient of 1). The first column is all zeros (except the last
element). The remaining submatrix is an identity matrix.

If you look closely at the matrices in the dual phase-variable form, you will
see almost the same pattern. If fact, if you make the following substitutions in the
preceding two paragraphs, you will get the dual phase-variable form matrices: replace
B and C, row with column, first with last, ascending with descending. A substitution
that allows us to go from one form to another is called a dual. In fact, you may
recall such dualities from basic circuit theory. This explains the name, dual phase-
variable form.

Because of the above-mentioned patterns, we can obtain these forms directly
from the transfer functions. If a system transfer function is given by

bis™! + - + bu_15 + ba

G =
(<) s"tast 4 ta,
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The phase-variable form matrices are given by

0 1 o .- .- 0
0O 0 1 0 - 0 0
Phase-variable form. A= 3 . . ’ B =
: i ! 0
0
L 1
[ —an ~@nq - —ay |

C=1[bybpy---by] D=]0]

The dual phase-variable form matrices are given by

—a 1 0 “ae 0-
—a; 01 0-- 0 by
Dual phase-variable form. 0 by
A = B = «
0 .
1 b,

| —a, 0 0 .- 0]

C=[1 0 .--- 0] D=]0]

Matrices that have the special structure observed in the A matrices are called com-
panion matrices in matrix algebra. An important property of companion matrices
is that their characteristic equation can be obtained by inspection. In particular, the
characteristic equation for the above A matrices is as follows:

Characteristic equation = s" + a;s" ! +--- + g,

8.2.3 Multiple Inputs and Outputs

Additional system outputs may be easily derived from the phase-variable arrangement.
For example, the single-input, two-output system of Figure 8.3(a) has the following
transfer functions:

Tui(s) = Yi(s) _ —5/s +4/s% + (—=12/5%)
U(s) |initial 14+6/s+1/s2+3/s3
conditions = 0
—552 445 — 12
TS 62 +s+3
Ya(s)| - 3/s + 1/s* + (—6/5%)
110 = U b T 1+6/s+1/s2+3/s?
conditions=0
352 +s5s—6

=s3+6s2+s+3
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©

Figure 8.3 Achieving multiple outputs and multiple inputs. (a) Multiple
outputs from the phase-variable arrangement. (b) Multiple inputs with the
dual phase-variable arrangement. (c) System with both multiple inputs and
multiple outputs.

The system transfer function can be written as a vector

T(s) = Tu@s) | 1 —5s2 4+ 45— 12
T )| T s3+6s24+5+3| 3s2+s5—-6
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The state space realization for the system in phase-variable form can be obtained
from the signal flow graph. Note that both transfer functions share the same
denominator and input, hence A and B are the same as the single-input case. The
realization is given by

[0 1 o0 0
i=]1 0 0 1|x+{0fu
A two-output system. -3 -1 —6 1

_[-12 4 =5 <+ 101,
61 3 0

Because there are two outputs, y is a two-dimensional vector; hence C and D must
have two rows to make the dimensions match. Also note that if the transfer function
is available, the phase-variable realization could have been written by inspection.

Additional inputs are easily added to the dual phase-variable arrangement. The
example two-input, single-output system of Figure 8.3(b) has the following transfer
functions:

Y(s)
Ui(s)

_ —5/s+4/s* —12/s°
Conitions 1+ 6/s + 1/s2 4 3/s3

and Ry=0
—5s2+45 — 12
TS +6s2+s5+3
Y(s)
Us(s)

() =

_ 10/s+7/s* — 8/s°
mital 1+ 6/s +1/52 +3/s3

conditions
and R1=0

10s2+7s — 8
s3+65s24+5+3

Ta(s) =

You can use the same kind of reasoning as in the preceding case to verify that the
dual phase-variable realization for the two-input case is given by

-6 1 0 -5 10
i=[(-1 0 1|x+ 4 Tlu
A two-input system. -3 0 0 —-12 -8

y=[1 0 Olx+[0 Olu

The system described by the simulation diagram of Figure 8.3(c) is in neither
phase-variable nor dual phase-variable form. Its two inputs and two outputs are
governed by the following Laplace-transformed equations:

sX1(s) = —2X1(5) +2X>(s)
§X2(s) = —3Xs(s) + 3X3(s) + 8X4(s) + TU1(s)
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sX3(s) = — X1(s) + Xa(s) — 6Uz(5)
sX4(s) = — 3X1(5) +2U2(5)

Yi(s) = Xa(s)

Ya(s) = 3X1(s) — 2Xa(s)

We can write the state space realization directly from these equations:

-2 0 00 0 0
; -3 3 8 7 0
X = x +
— 0 01 0 -6 A two-input two-output
L_% 000 0 2 system.

_fo 1 00],  fo o],
Y=13 2 0 0 0 0

Observe that matrices A, B, C, and D are not in any particular form.

Q DRILL PROBLEM
D8.1 Draw simulation diagrams in either the phase-variable or the dual phase-
variable form for systems with the following transfer functions:

(@ T(s)= gz__j%

®) T()= 3s3_:22:_25—i:;9-l-1

© Tu@®= g3 (:_4(;923; :_4:’; (-)|-802
Tia(s) = s3__|(_) 'g_s;s:_f 17 s7s— -: ‘3.2

d Tu@) = JE 2:2 -|_— ;s +5
I(s) = e

s346s2+25+5

Phase-variable form is particularly convenient for the synthesis of single- and
multiple-output systems, while in dual phase-variable form, single- and multiple-
input systems are easily arranged. There are a whole spectrum of other ways of
connecting integrators to achieve systems with desired transfer functions, including
systems with both multiple inputs and multiple outputs. Moreover, the representation
of systems in terms of integrators is useful not only for transfer function synthesis, but
for the description of systems of all kinds, particularly those that are very complicated,
for which a standard, compact notation is especially helpful.

A general state variable description of an nth-order system involves » integrators,
the outputs of which are the state variables. The input of each of the integrators are
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driven with a linear combination of the state signals and the inputs:

5X1(s) = anXi(s) + anXa(s) + - - - + a1, X, (5) + bryus(s) + - - - + byjui (s)
5Xa2(s) = an X1(s) + anXa(s) + -+ - + 2, X, (5) + bagus () + - - - + byju; (s)

5Xn(5) = an1 X1(5) + @2 X2(5) + - - - + Aun X0 (5) + bp1ut1(5) + « - - + bpiua; (s)
[8.1]

In the time domain, these are a set of 7 first-order differential equations in the n state
variables and the inputs:

dx1
27— auxitany 4+ ank, +buur + -+ bru;
dX2
qr X1t anXy o+ amk +byiuy + -+ by
dx,
dt =anx + QpaXy + -+ QunXn + bnlul + -0+ bniui

These state equations are compactly written in matrix notation as follows:

X1 X any ap - anpl|xn
d | x X2 @ dp - @ | | X2
dt N
Xn o anl Gn2 -+ Ay Xn
by biu | |m
by by | | uz
+
b1 by U;
or
dx .
— =X=Ax+ Bu
dt

The column matrix of state variables
X1
X2

X =

Xn
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is called the state vector. The inputs are arranged to form the input vector,

U

Ui

The system outputs are similarly arranged in an output vector,
Y1
y=1:

| ym
related linearly to the state variables through the output equations:

¥ =cuXxi+cpxa+ -+ Cinkn

Ym = Cm1X1 + CmaXa + -+ + CranXn

or

N €11 €1z - Cin X1

Ym Cml Cm2 "' Cmn Xn

or
y=Cx

The state equations describe how the system state vector evolves in time. One may
imagine the tip of the vector tracing a curve, the state trajectory, in an n-dimensional
space. The output equations describe how the output signals are related to the state.

For systems described by linear constant-coefficient integrodifferential equa-
tions, the state-variable arrangement is simply a standard form for the equations
describing a system. Instead of dealing with a mixed collection of simultaneous sys-
tem equations—some of first order, some of second order, some involving running
integrals, and so on—additional manipulation of the original equations is done to
place them in the standard form. The advantages of a standard form are that system-
atic methods may be easily brought to bear upon very involved problems and that a
degree of unification results.

8.2.4 Physical State Variables

State space equations are sometimes written directly from first principles. For
example, consider a standard series RLC circuit driven by a voltage source. From
Kirchhoff’s voltage law (KVL), we have

di 1
_Ri a 1 f.
Vi z(t)+Ldt + C /I(T)dt
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There are many ways to convert this equation to state space form. It is possible,
however, to obtain the state equations directly if we know how to choose the states.
Voltage across capacitors and current through inductors are frequently chosen as
(physical) state variables in circuit analysis. We therefore let

1
Vc =X = Efi(‘t)dt and IL = X2

Because the elements are in series, the loop current is equal to the inductor current.
Therefore, from the foregoing definitions we have
1

.7'C] = —=X2
C

and using KVL, we also have
Vs = Rxp + Lxs + x¢

Rearranging, we get

.1 R Vs

mETpRoLRYYL
The output equation depends on what we desire to control, or what we can measure,
or both. In fact, in the most general setting, the controlled variables and the measured
vatiables might be different. Suppose we can measure only the loop current (measured
output, y), but we want to control the capacitor voltage (controlled output, z); the
complete equations in vector—-matrix form are (u stands for V;)

1

o = 0
X = -1 —-R x + l u
L L L
y=I[0 1]x
z=[1 O0lx
|
|
|
[6=x;
I
|
|
@) @)

As another example, consider the well-known problem of balancing an inverted
pendulum on a moving cart shown in the figure. The linearized equations of motion
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for this mechanical system are given by
(J +mi®b +mlx —mgld =0
M+mi+mld=u

where # = pendulum angle and x = cart position. The system parameters are as
follows: cart mass M = 26/3, pendulum mass m = 4/3, [ = 3/4 = (pendulum
length)/2, gravity constant g = 9.8 m/s, and J, the pendulum moment of inertia about
its center of gravity (assumed to be in the middle of the pendulum= ml/ 2/3. From
these hypothetical values, we get

6+i—-g0=0 [8.2]
105 +6 =u [8.3]

These equations are a set of two coupled second-order differential equations. How
we define the state variables for this system depends on the control objectives. That
is, the choice of the state variables and the control task are interrelated. We consider
the following three situations.

Case I: The objective is to balance the pendulum (i.¢., we do not care about the cart
position or velocity). In this case, the pendulum angle and its angular velocity are
chosen as the state variables. Solving for ¥ from Equation (8.2) and substituting in
Equation (8.3), we get

. 10 1

6 =-—gb—-

98 79"

Letting x; = € and x; = 6, and assuming we can measure the pendulum angle, we
get

9

0 1 0
A= 10g ; B=]-1 and C=[1 0]
9

Case II: The objective is to balance the pendulum and stop the cart. The position
of the cart is not important here as long as its velocity is brought down to zero. In
this case, we add another state variable for the cart velocity. Writing and solving
Equation (8.3) in terms of cart velocity v, we get

. g 1
= =20+ -
v 9 + 9u

Using v as the third state variable, we get the following third-order system equation

0 1 0 0
10g -1
A= 0 0, B= 5 and C=[1 0 0]

% 0 0 Z
9 9
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Case I1I: The objective is to balance the pendulum and position the cart (e.g., return
it to its original position). In this case, we add the cart position as the fourth state
variable.

0

10g

= 9
i
9

0 O

= o

10

0 0
, B= and C=[1 0 0 0]

00

1

o O o O
o =

Note that as the task complexity increases, so will the order of the model used. Whether
it is possible to accomplish the preceding tasks by measuring only the pendulum angle
is another question. This is related to the notions of controllability and observability
discussed later in the chapter.

U DRILL PROBLEMS
D8.2 Draw simulation diagrams for the given state space equations.

e []} =)
-

© [ | -2 0 0f[x 1
x| = 0 -3 O[|x2]+|—6]u
Bl L0 0 —4J X2 10
w] [1 1 o™
»| 011 iz

| 3

D8.3 Draw simulation diagrams to represent the following systems:

R R e
o -]
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®) [ 0 10 3|[x o 1,
Bl=1 5 8 of|x|+ 20[u‘]
#3 -2 =7 =3|]|x —1 3|L*%
X1
y=[0 4 -3]|x
x3
© [#] [-2 0 =6][x 8
Ji'z = 3 5 0 X | + —2\u
.7?,'3 —4 0 7 X3 0

w|_[o -1 1]
wl -1 1 o|]?
X3

8.2.5 Transfer Functions

The transfer functions of a system represented in state-variable form may be found
by Laplace-transforming the state equations with zero initial conditions. In general,
these are Equations (8.1). Collecting the terms involving X (s), there results

(s—an) —an —ay, Xi(s)
—ay (s —aw) —ay, Xo(s)
—ani —au2 (S - ann) Xn(s)

by b2 by | | Ui(s)
bn b by | | Ua(s)
b bno bui | | Ui(s)

or

[sI —AlX(s)=BU(s)
where [ is the n X n identity matrix

00
00

10
01

I =

00

0

1

Solving for the Laplace transform of the state vector, we have

X(s) = [s] — Al BU(s)
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The output and state vectors are related by

Yi(s) ci1 ¢z 0 e | | Xi(s)
Ya(s) €1 Cp o o || Xa(s)
Yu(s) Cm1 Cm2 ' Cpp X, ()

or
Y(s) = CX(s) = {CIsI — A]"'B} U(s)

The m x i matrix in braces { } consists of the input—output transfer functions of the
system, arranged as a matrix:

I(s) Tin(s) - Tuls)
. Di(s) Tols) -+ Tnls)

ClsI —A]'B=|
Tml(s) Tm2(s) e Tmi(s)

For example, a single-input, single-output system with state equations

HIRENHRE
SN

has transfer function given by

-1
omn of [
)]
-2 s43]|-5
=[1 -

243542

(4s —5)
1 -1
[ ! [(—SS - 23):|
N s2+3s+2
95 +18
Cs2435 42
The two-input, two-output system

HEER | HE R
3l
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is described by the transfer function matrix given by

C P
L[

s24+3s+2

1 _1] (4s —5) 65
8 1f|(-5s—-23) -12

s2+3s+2

9s + 18 6s +12
s2435+2 s243s+2 | _ | Tul le(S):|

Transfer function matrix.

27s — 63 485 —12 | | T(s) Tn(s)
| s24+3s+2 s2435+2

where
95 + 18 Y1(s)
Tu(s) = = 12| stial
s24+3s 42 Ui(s) | oo ons
and Up=0
Tia(s) = 6s+12  Yi(s)
P T 243542 Up(s) [mimal,
and U =0
27s — 63 Ya(s)
Th1(s) = = L
u () s2+35+2 Ui(s) gl%'ltions
and U=0
48s — 12 Yo(s)
Ty(s) = = L
2(s) 52435 +2  Uy(s) |mmitial
and U;=0
All the transfer functions of a system share the denominator polynomial
|sI — Al

where A is the state coupling matrix for the system, since
adjoint[s] — A]

1—AT' =
[s — Al IsT — A
The nth-degree polynomial
|sI —Al=0

is termed the characteristic polynomial of an #n x n matrix A, and the n roots of that
polynomial are the eigenvalues, or characteristic roots, of the matrix. A system is
stable if and only if the eigenvalues of the state coupling matrix are all in the left half
of the complex plane.
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U DRILL PROBLEM
D8.4 Find the transfer function matrices of the following systems:

NRBEEARERR
RN

Ans. [—125— 189 485 +222
| s24+35+5 s2+3s+5]
(®
HEES RN
)232 -2 0 X2 1
yl__ —4 6 X1
MR
Ans. [ =25 —22
s2+35+8
9s 4+ 21
| 52 +35+8
(©)
(5] [-4 0o 2][x -3 -2
Bl=[-1 -1 of|x|+| 4 1 [“1}
2] |3 0 =3][m o o |L®
] [ 11 1]
»n| [-1 0 1f|®
K | X3
Ans. s24+10s + 15 —s(s+95)
C+DE2+T7s+6) (+D(E2+7s+6)
3s 25
s24+7s+6 s24+75+6

8.3 State Transformations and Diagonalization

You have already observed that for a given system there is more than one state space
representation. We have introduced two canonical forms, namely, the phase-variable
and dual phase-variable forms. Hence, state space representation is not unique. In
fact, if you change the way you label the states in a simulation diagram (number the
states from left to right instead), you will obtain other forms. In general, there are
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infinitely many representations. These are generally called (state space) realizations
of a system. Because these realizations correspond to the same transfer function, we
want to determine how we can go from one state space realization to another.

The answer is that all state space realizations of the same system are related to
each other via a linear transformation.

x(t) = Pz(t) P = nonsingular matrix State transformation.

where x (¢) represents the old state, and z(z), the new state vector. How do we obtain
the matrices corresponding to the new realization? We do this by differentiating both
sides of the equation

x=P;=Ax+ Bu=APz+ Bu
Multiplying the equation on the left by the inverse of P, we get

t=P 'APz+ P 'Bu The transformed equation.
The output equation becomes

y=Cx+Du=CPz+ Du

Summarizing, we have that if the original realization is {A, B, C, D}, and the new
realization is {A, B,C, D}, then the relation between the realizations is given by

A=P'AP B=P'B C=CP D=D

Let us demonstrate the procedure by an example. Consider the system shown in
Figure 8.4:

X1=x1+x

Xy =x1+x2

y=x1+x
Define new state variables as
z S e A . X tx
1= 7 2T
1
5
Omm———0 Zy(5)

1

(@) ®)

Figure 8.4 (a) Signal flow graph of a system. (b) Signal flow graph of the
transformed system.
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This can be written in matrix form as

—ll_lx or x—P—11
Sl PR == 1)f

Therefore the state space matrices will be transformed accordingly

A=P 1»A=P4M’
11

[ R

C=[1 1]1->C=CP

11
=1 1][_1 1]=[0 2]

B and D are zero since the system has no inputs. Writing the new state equations,

we get
z1=0
72 =22
y =2z

Observe that the system in this form is much easier to work with. In the original
realization, the second-order system can be viewed as two coupled first-order systems.
In the new realization, the same system appears as two uncoupled first-order systems.
Every state space realization represents the same system, but each one allows us to
look at the system from a different perspective. In modern control theory, state space
transformations are used quite frequently for numerical purposes. Some realizations

have superior numerical properties to others.

In the case of our present example, we note that even though we have not yet
discussed how to solve state space equations, the solution in the new decoupled

realization is almost trivial. The solution is

z1(t) = z1(0)
22(2) = €”22(0)

To obtain the solution to our original equation, we note that

©
x(t) = P2(t) = [_i 1] [;'z:(m]

Also note that the initial conditions have to be transformed as

z(0) = P"1x(0)
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1 0
Suppose the initial conditions are given by x(0) = l: 1]; then z(0) = |: 1:! and the
solution is
ot
x(@) = [ ez:]

The input—output relations of a system are unchanged by a nonsingular change of
state variables; it is only the internal description, in terms of its state, that is changed.
This can be proved by the following line of argument

T(s)=C(sI — A)~'B
Substituting for A, B, and C, we get

T(s)=CP(sI — PT'AP)"'P7 !B
Let I = P~ 1P, then

T(s) = CP(sP~'P — P 'AP)'P~'B=CP[P (s1 — A)P]"'P7'B

Recall from matrix algebra the identity: (XY Z)™! = Zz~ly—1x~! State transformations leave
B the transfer function
T(s)=CPP ' (sI—-A)'PP'B=C(sI -A)'B=T(s) unchanged.

0 DRILL PROBLEM

D8.5 Make the indicated change of state variables, finding the new set of state and
output equations in terms of z.

RREERHER:

»
y=[1 0] ]

X2

Xl 2 1- -21
X2 4 3_ | 7
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(b

(©)
2 [—2 1 1)[®] [1?
»|=1-3 0 0 x|+ 1u
J&3J | 0 0 O X3_| 1
- — - X1
Y1 2 -2 1 X
= 2
2| _0 -1 1_ .
3
1 [1 0 1 [zl
x»|=10 1 3 22
) |00 4]|z
Ans. 21 2 1 5|2 3/4
2|=-3 0 =3||z|+]|1/4|u
3 i 0 0 0 z3 1/4
_ 21
_[2 =2 o]},
Y=o -1 1||®
- 23

8.3.1 Diagonal Forms

As shown in Figure 8.1(a), a simulation diagram results in a set of system matrices
when a transfer function is properly decomposed. Phase variables or dual phase
variables result in a recognizable form for the A matrix. In this section, a properly
chosen change of variables can create a set of A, B, and C matrices in which the A
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mairix has a very simple (diagonal) form. The state variables [Figure 8.1(c)] are often
called canonical when the A matrix becomes diagonal.
When a nonsingular change of state variables in a system representation is made,

z= P_lx, x= Pz
the new state coupling matrix A is related to the original one A by
A=PlAP

Such an operation on a matrix is termed a similarity transformation. One of the most
important results of matrix algebra is that, provided a square matrix A has no repeated
eigenvalues, a similarity transformation P may be found for which

A=PlAP

is diagonal, with the eigenvalues as the diagonal elements.

A similarity transformation that diagonalizes A can be created using a set of
eigenvectors, one for each eigenvalue. The German word “eigen” means “character-
istic.” These eigenvectors are not unique. Each eigenvector can be multiplied by a
constant that works just as well. The following procedure can be used to get P.

1. Find the eigenvalues s; where
|sI —Al=0

2. Find an eigenvector x; for each s;
[s; ] — Alx; =0

3. Let P be a matrix consisting of the eigenvectors

P=[x;:x2: - :x,]
51 0 0
PTlAP=|0 s O
etc.

In the example just analyzed, the P matrix was actually computed by means of
the same procedure. You can verify that the eigenvalues of the system are 0 and 2,
and the eigenvectors are the columns of P.

As another example, consider

X1 1 2 o] = 1
Hl=l 1 2 of||x|+|0ju=A4c+bu
%3 _—2 -1 —3' x3 0
wl 1 o 117
1
[y2_= 1 -1 0] x| =Cx
| x3
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The characteristic polynomial is

‘s+l 2 0
-1 s-2 0 |=s(s—D(E+3)
’ 2 1 s+3

The eigenvalues can be selected in any order. If
S1=0 52=1 S3=—3

Then the first eigenvector is found by solving

si+1 2 0 11 0
-1 51— 2 0 X21 = 0
2 1 §1 + 3 X34 0
X11
X1 =\ X21
X31

With the first eigenvalue being zero
x11 + 2xn =0
—X11 — 2x21 =0
2x11 +x21 +3x31 =0

The first two equations are equivalent, so an infinite number of solutions exist.
It is possible to select x,; arbitrarily (say —1 ). Then x); is 2 and x3; is —1. By
proceeding in a similar way, three eigenvectors result:

2 4 0
X1 = -1 Xy = —4 X3 = 0
-1 -1 1

Any nonzero multiple of any eigenvector also works. Collecting these eigenvec-
tors into P, the transformation

2 40 1 10

— -1 _ |1 1 1
P=|-1 -4 0f Pl 40
-1 -1 1 31

gives a state-variable representation for which the state coupling matrix is diagonal:

oS

Il

A

b=

~v

il

|

|
W= =
- O

P

[\

(=]

I

—_

|

LS

o

FTRNJER,
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1 1 0o][0o 4 o 00 O
—1 1 1 —
=|-i -3 0 -4 O0|l=[01 o0
| 2 1 1]]o -1 -3 0 0 -3
1 1 o] 1 1
B=pP'B=|-1 -1 0 =|-1
31 3
| 4 2 ~dL 4
- 2 40
_ 1 01 1 3 1
C=CP= ]—1 —40=[ ]
R B N 3 80

The system described by the new state variables,

2]l Jo o o]z 1
=01 0||z|+|-1|u
. 3

| 23] _0 0 -3 Z3 ry
- - Z1

i 1 3 1 :

»n| |38 0|

- - 73

has the same relation between u and y. Because the state coupling matrix is diagonal,
however, the state equations are decoupled from one another. The system is repre-
sented in the form of three separate first-order systems, as in the simulation diagram
of Figure 8.5.

Finding a transformation (eigenvalues) matrix that diagonalizes a square matrix
A with distinct characteristic roots is a fundamental technique of linear alge-
bra. It is termed the characteristic value problem and is discussed in detail in
most texts on linear algebra, including those cited in the references at the end of
this chapter.

Figure 8.5 Simulation diagram for the
O Y,(s) diagonalized example system.
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8.3.2 Diagonalization Using Partial Fraction Expansion

Another method of determining a diagonal form for a system involves partial fraction
expansion. For a single-input, single-output system such as

X1 -1 -2 o[ 1
X | = 1 2 0 x2|+]10{u
X3 -2 -1 3 X3 0
X1
y=I[1 0 1] x2
X3

the transfer function is
T(s) =C(sI — A)~'B

s+1 2 o |7'[1
101 -1 s-2 0 0
2 1 s+3 0

s245—-6 —-25—6 0
s+3 244543 0

—25+3 —s+3  s2—3 1
=[1 0 1] 0
s34+ 25% —3s
(s2 45 —6) ) 3
oM b gy [ s 3
s34+ 252 —3s s34 252 —3s
(-2s+3)

Upon expanding this transfer function in partial fractions, there results

s2—5-3 3

s(s — 1)(s +3)

which may be considered as the tandem (or parallel) connection of first-order
systems shown in Figure 8.6(a). Each of these first-order subsystems is drawn
in state-variable form in Figure 8.6(b), where the three integrator output sig-
nals are labeled as state-variables. The state-variable equations for this alternate
system representation, which has the same transfer function as the original sys-
tem, are

s—1+s+3

L ]

T(s) =

1
==+
S5

21=u

2=22+u
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1
s 4

(a)

Figure 8.6 Diagonalizing a single-input, single-output system. (a) Tandem first-order sub
systems from the partial fraction expansion of the transfer function. (b) Subsystems in
simulation diagram form.

Z3=—-3z34+u

3
y=z21—3z+ 3z

or
2 00 o] 1
z2=1]0 1 0 2|+ 1u
23 0 0 -3 z3 1
21
y=[1 -3 il|=z
3
which is diagonal.

O DRILL PROBLEMS
D8.6 Use the partial fraction method to find diagonal state equations for single—
input, single—output systems with the following transfer functions:

(a)

—55+7
Ty = — 2+

2475+ 12
Ans Ta]_[-3 o][=], [ 22],
Bl | 0 —4||x —27

(b)

2_2
T(s) = 3s

G+ DE+H(6+10)
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Ans. # 1 0 ol = %
X | = 0 —4 0 x| + —% u
s 0 0 —10] |4, »
X1
y=I11 1 1]| x2
X3
© )
=5+
Ans. i o o ol [ 1
x|=]10 -1 0 a4+ 1|u
%3 0 0o -2 X3 1
x1
y=[2 -4 2]| x
X3

D8.7 Draw a simulation diagram for each of the following state equations.

[T 21T

SREEEIRER
o

8.3.3 Complex Conjugate Characteristic Roots
In general, diagonalized state equations for systems with complex characteristic roots
involve state equations with complex coefficients. For example, the single-input,
single-output system with transfer function

6s% + 265 + 8 =2 44 4—j
(+2(2+25+10)  s+2 s+1+j3 s+1-— 3

may be represented in terms of state variables as in the simulation diagram of
Figure 8.7(a). The gains associated with the complex characteristic roots are generally

T(s) =
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complex numbers. The state equations, in terms of the indicated state variables, are
given by
§X1(s) = —=2X,(s) + U(s)
5X3(s) = (=1 — j3)Xa(s) + U(s)
sX3(s) = (=14 j3)X3(s) + U(s)
Y(s) = —2X1(s) + (4 + ) X2(s) + (4 — j)X3(s)

or
0l [—2 o 0 xy 1
=] 0 -1-j3 0 x|+ 1|u
i 0 0 —1+j3]]|,, 1
X1
y=[-2 4+ 4-jl{ x
x3

Although the individual physical components of this representation involve com-
plex numbers, hence cannot be assembled, the mathematical relationships are valid.
To build such a system, or to represent it in a convenient form that does not involve
complex numbers, the two complex conjugate component parts may be combined
just as one commonly combines the corresponding conjugate partial fraction terms:

44+ 4—j  8+14
s+1+j3 s+1—j3 52425410
This portion of the system may be represented in phase-variable form, giving the real-

number simulation diagram of Figure 8.7(b). The state equations for this alternative
arrangement are given by

5Z1(s) = =2Z1(s) + U(s)

§Z5(s) = Z3(s)

5Z3(s) = —10Z5(s) — 2Z3(s) + U(s)
Y(s) = —2Z,(s) + 14Z5(s) + 8Z3(s)

or
al [-2 o o]fa 1
= 01 0 1|lz|[+]|0]u
& 0 =10 =2 | 5] LT
21

23



566

STATE SPACE ANALYSIS

1%

U(s)

-1+j3)
(@) ()]

Figure 8.7 A system with complex characteristic roots. (a) Diagonalized system. (b) Alter-
native form for the diagonalized system, where the complex conjugate root terms have been
combined and placed in phase-variable form.

It is thus possible to represent systems with one or more pairs of complex conju-
gate characteristic roots with diagonalized state equations involving complex numbers
or in block diagonal form involving real numbers. For example, the following state
equations

X1 _ - | %1 1
_ 3 0 0 0 00
2l o -4 o o oo™ [!
| o 00 11 00 x3 N i i 4
] [0 0 =17 -2 0 0| x i
s 0 0 0 Oi 0 li xs :_65
. [0 0 0 0 =10 3i] P
| ] - T | x6 | i1}
e
x2
- [ o i~ ‘x3
y=[6 -8 i1_=51:0_Ti
X4
X5
| X6 |

are in block diagonal form and represent a system with transfer function
6 -8 =55 +1 7s
T =
O= ittt ernsrr T v+

O DRILL PROBLEMS

D8.8 The following transfer functions for single-input, single-output systems
involve complex characteristic roots. Find diagonal state equations for these sys-
tems. Then find an alternative block diagonal representation that does not involve
complex numbers.
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(@
T(s) =

Aiis.

(b)
T(s) =

Ans.

()
T(s) =

Ans.

10
53 + 252 + 5¢
X1 0 0 0 X1 2
X|=]0 0 1 x2|4+]|0|u
i 0 -5 -2 x3 1
X1
y=[1 -4 -=2]| x2
X3
352 -1
(52 4+ 4)(s2 + 4s + 5)
x1 o1 o o][®] [°
X2 —4 0 0 0 X2 1
w171 oo o 1||x|T]ol”
4 0 0 -5 —4 x4 1
X1
y=[-4 ¢ 0 ]|
X4
s2—4s+10
(s +2)(s2+ 65 +13)
i 2 0 o[
X | = 0 0 1 x|+]|0|«
i 0 —13 —6] | 4
X1
y=[2 % —4]|n
x3

8.3.4 Repeated Characteristic Roots

The state equations for a system with repeated characteristic roots may not neces-
sarily be diagonalized. A block diagonal form, termed a Jordan canonical form,
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is commonly used when a simple representation is desired. For example, the
single-input, single-output system with transfer function

_1024sls56_ 3 (=6) "7 |

T s+ N+2)?  s+4 5L (s+2)2

T(s)

may be represented as in Figure 8.8(a). A simplification results when the 1/(s + 2)
transmittance is used in common by two paths, as shown in Figure 8.8(b). A
corresponding state-variable representation is given in Figure 8.8(c).

The state equations are given by

sX1(s) = —4Xy(s) + U(s)
sX3(s) = —2X5(s) + X3(s)
sX3(s) = —2X3(s) + U(s)
Y(s) = 3X:1(s) + 7X2(s) — 6X3(s)

or
X1 —4 0 o][™ 1
Jordan form. X | = 0 E:_Z _____ 1 _i X | + li_di 7
i3 010 _=2][x] LL
I x
y=B 7. =6}| =
X3

For three repetitions of a characteristic root, the corresponding transfer function
partial fraction terms are

ky ks ks

s+a + (s + a)? + (s +a)

Y(s)

()

Figure 8.8 State equations for a system with repeated characteristic roots. (a) Diagram show-
ing each partial fraction term. (b) Diagram with common signal path through a repeated
transmittance. (c) Diagram showing state variables.



STATE TRANSFORMATIONS AND DIAGONALIZATION

56

Branches to other Branches from other
term transmittances term transmittances

(2)

©

Figure 8.9 State variables for repeated roots. (a) Diagram showing each partial fraction term.
(b) Diagram using common signal paths. (c) Diagram showing state variables.

and the state variables may be defined as in Figure 8.9. The resulting Jordan block
has the following structure:

w1 [ T80 0 x| [
% i 0 —a 1 é 0 0 X EOE
| =200 —a 0 0 -] x| 4 |iLin,
I_. 0 0 o0
B JL-d1 L-d
X1
L B ek A x2
y=bks_kp_kii --1],,
The state-variable equations
B . _[x] [0]
. -2 1 0000
* 0o 2 o000 off*| [!
310 | 0 0 -3 00 0] N il ;
2] | 0O 0 0 4 1 0|z, 0
s 0 0 0041 Y 0
. | 0 0 0 0 0 4]
| X6_| | X6_| _IJ
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X1
X2
X3
y=[4 -5 6 7 -8 9]
x4

X5

x5_

for example, are in Jordan canonical form. They represent a system with transfer
function

-5 4 6 9 -8 7

T =
) s+2+(s+2)2+s+3-I_s—4+(s—4)2+(s—4)3

Q DRILL PROBLEM

D8.9 The following systems have repeated characteristic roots. Find an alternate
set of state equations in Jordan canonical form.

@

IR e
y=[2 -6l [Z]
P R (W]

21
¥y =[—60 26]|: :|
22

(b)
1 -6 1 0™ 1
B|={-9 0 1||x|+]| 2|u
s 00 0|4 -1
X1
y=[3 -2 1]| =

X3
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Aps. Z "3 1 ol [ 0
2l=] 0 =3 1| z2{+]0|u
%3 | 0 0 3] [z 1
21
y=[2 -2 0]| =
] z3

O Computer-Aided Learning
To create a state space model, we use the “ss” command with the following syntax:

SYS=SS(4A,B,C,D)
For example, to define the following system:

x= L2 x+ -1 u
“\3 4 6
y=(0 -—14)x+ 8u
we enter the following commands
>> a=[1, 2; 3, 4]; b=[—1; 6]; c=[0, —14]; d=86;
>> g=s8(a,b,c,d)

and MATLAB responds

a=
x1 x2
x1  1.00000 2.00000
x2 3.00000 4.,00000

b=
ul
x1l -1.00000
x2 6.00000
c=
x1 x2
y1 0 -14.00000
d=
ul
yl  8.00000

Continuous-Time System

We can convert from state space to transfer function form using the “tf”’ command.

>> g s=tf(g)
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Transfer function:
8 872-124 s+110

s72-5 s-2
We can then transfer back to state space form using the “ss” command
g_ss=ss(g_s)
a=
x1 x2
xl 5.00000 0.50000
x2 4.00000 0
b=
ul
x1 8.00000
x2 0
c=
x1 x2
yl -10.50000 3.93750
d=
ul
yvi 8.00000

Conftinuous-Time System

Note that the A, B, C, D matrices that MATLAB returns are different from the
ones we used to define the original system we called g. The reason as explained
in the text is that the state space representation is not unique.

Moreover the “tf” and “ss” commands create system objects that MATLAB
commands can interpret. If we want direct access to the object features such as
numerator, denominator, and the {A, B, C, D} matrices, we need to extract them.
To extract the {A, B, C, D} matrices, we use the “ssdata” command.

>>[a,b,c,d]=ssdata(g_ss)

a=
5.0000 0.5000
4.0000 0
b=
8
0
c=
-10.5000 3.93756
d= 8
We can now use these matrices to determine stability, controllability and other
system properties.

The system can be transformed to other forms using the “canon” and “ss2ss”
commands. The “canon” command has the following syntax:

sc=canon(sys, *type’)
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where type is either ‘companion’ or ‘modal.” The latter diagonalizes the system
(also known as the modal realization), and the former converts it to companion
form (a variation of the phase or dual-phase variable forms)

>>sd=canon(g_ss, *'modal’)

a=
x1 x2
x1 5.37228 0
x2 0 -0.37228
b=
ul
x1 9.32759
x2 —-5.59456
c=
x1 x2
yl -6.07043 4.89359
d=
ul
yl 8.00000
>>[sd]=canon(g_ss, *com’)
a=
x1 x2
x1 o] 2.00000
x2 1.00000 5.00000
b=
ul
x1 1.00000
x2 0
c=
x1 x2
yl -84.00000 -294.00000
d=
ul
yl 8.00000

The “ss2ss” command has the syntax
sys2=ss2ss(sysl,P) or [a2,b2,c2,d2]=882ss(a,b,c,d,P)

where P is the nonsingular state transformation matrix. Note that our definition
of P is different from that of MATLAB, which defines P by

z(t)=P x(t) or new state=P.old state
We, on the other hand, use
x(t)=P z(t) or old state=P.new state

Hence our P is the inverse of what MATLAB uses. To get the answers in the book
using the “ss2ss” command use inv(p) instead of p.
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Here is an example:

[z 2 1),
Y=o -1 1

1 0 1
Use the transformation matrix P= [0 1 3
0 0 4
>>p=[1 0 1;0 1 3;0 0 4];
>»>a=[-2 1 1;-3 0 0;0 0 0];

>>b=[1;1;1];

>>c=[2 -2 1;0 -1 1]; d=[0; 0]1;
>>g=ss(a,b,c,d);

>>tf(g) % the transfer function of the 2-output system

Transfer function from input to output

8~ 2+8s+9
#l: ———————o
s73+2s872+3s
3s+6
#2: ———m—————-

s73+2s72+3s
To transform using the given P matrix we use “inv (p)” to get the matrix P~1. We
then extract the new {A, B, C, D} matrices to verify our answers:

[a2,b2,c2,d2]=ss2ss(a,b,c,d,inv(p))

a2=
-2 1 5
-3 0 -3
0 0 o
b2=
0.7500
0.2500
0.2500
c2=
2 -2 0
0 -1 1
da2=
0
0

Compare the foregoing answers with the ones from the formulas: A= PlAP,
B=P'B,C=CP
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>>p\a*p
ans=
-2 1 &
-3 0 -3
0 0 0
>>p\b
ans=
0.7500
0.25600
0.2500
>>c*p
ans=
2 -2 0
o -1 1
Cs.1

(a) Find the transfer function of the systems defined in Drill Problem D8.4.

(b) Redo Drill Problem D8.5.

(¢) Convert the systems defined in Drill Problem D8.6 to state space form, and
then diagonalize using the “canon” command to verify the answers.

8.4 Time Response from State Equations

8.4.1 Laplace Transform Solution

One method of calculating the state of

a system as a function of time is to Laplace-

transform the equations, solve for the transform of the signals of interest, then invert
the transforms. The system outputs, being linear combinations of the state signals,

are easily found from the state.
For example, consider the system

1| -6 1{[x + 0 y
J.Cz B -5 0 X2 1
y =[1 —21[’“]
X2
with initial state
[xl(O_)]_ -3
0] | 1

and input
u(®) =17

where 7 represents a step function starting at ¢ = 0.
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The Laplace-transformed state equations are as follows:
5X1(8) +3 = —6X:1(s) + Xa(s)
7
§Xa(s) — 1= -5X(s) + -
5

(s +6)X1(s) — Xa(s) = —

7 7
SX1() +sXa(s) = 14+ = = 2T
-3 —1]
X4 +Dfs s —3s+ (s +7)/s
§) = =
! |s+6 -1 s2+654+5
5 )
3524547 _§+ -3 N -2
—s(s+1)(s+5)_s s+1 s+5

nW=>I-3"-2* >0

8.4.2 Time Domain Response of First-Order Systems

In many situations, it is advantageous to have an expression for the solution of a set
of state equations as functions of time rather than in terms of Laplace transforms. For
a first-order state-variable system, we write

dx

I =ax + bu

5X(s) —x(07) =aX(s) + bu(s)

X6y =222 4 bute)
—a

0~
x(t)=L { x( )+b()_a]
= e*x(07) + convolution [bu(r), €*']

=e”x(07) + / e Dpu(r)dr

the inverse transform of a product of Laplace transforms being the convolution of the

corresponding time functions.
As a numerical example, consider the first-order system

x=-2x+3
y =4x

The general solution for x(¢) is

t
x(t) = e Zx(07) +/ 3e 2"y (r)dt
-
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If
x(07)=10 andu =35
then

¢
x(t) = 107 + / 15¢-2¢—) gy

27 |*

=10e"% + 15¢% %

o-
e |

=10e% + 15e"2‘e—2—

— S, % 15
=z " +35 t2 0
and the system output is

y(t) =4x(t) =10e¥ +30 >0

8.4.3 Time Domain Response of Higher-Order Systems
In general, a state-variable system

x =Ax+ Bu
has state response given by

sX(s) —x(07) = AX(s) + BU(s)

[sI —A)X(s) =x(07) + BU(s)

X(s) = [sI — AT 'x(07) + [sI = —A]"'BU(s)

Denoting the resolvent matrix by ®(s) = (sI — A)~! and its inverse Laplace
transform, the state transition mairix, by

@) = LH[sT - A7}
then Solution of state equations.

x(2) = ®()x(07) + convolution [Bu(t), ®(#)]

= ®@)x(07) +f &t — t)Bu(r)dr
0

For example, for the system

x| _ -3 1f[x 2

F-15 A

the state transition matrix is given by
&) = L7 {Is1 - A]7'}

<z
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B K} 1

_ -1 s2+354+2 243542
-2 s+3
| s2+35+2 5243542
- —1 2 1 -1
— - s+1+s+2 s+1+s+2
=2 2 2 -1
_s+1+s+2 s+1+s+2

_e—t + 2e—2¢ et — e—2z
T 26t 42672 et — ¥
The system state is, in terms of initial conditions and the inputs,
@ | | e+ 2% et —eg ¥ x1(07)
x2() | | —2eF +2e7% 2e' — 2 || x,(07)
t _e-—(t—r) + 2e—2(t—r) e—(t—z) _ e—2(t—r)
+ o _2e—(t—r) +2e—2(t—r) 28—(:—1:) o e—2(t—1:)

X l:—zl ] u(t)dr

U DRILL PROBLEMS
D8.10 Use Laplace transform methods to find the outputs of the following systems
for ¢ > 0 with the given inputs and initial conditions:

(2)
%= —2x+u(®
y = 10x
x(07) =3
u(t) = 4e™

Ans. #e‘” + %es'

EAEE AN
= -]
[z]- 1]
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where the input x(¢) is the unit step function.

Ans.  Y(s)= (10s? + 1905 4+ 20)/s(s + 3)(s + 4)
y(O)= 3+ L™ —145¢% 120

(©)

X1 -5 1 0 X1 0

n|l=1-6 01 x2|+]|0|u

X3 0 00 X3 1
X

y=[1 0 0]| x

X3

x(0)=0

u(t) = 8(¢), where 8(¢) is the unit impulse.
Ans, l+ie -3 120
D8.11 Calculate state transition matrices for system with the following state
coupling matrices A, using

o) = L7 {[sT — A"} :
(@)

ABS. 7] 116056 — 0.11e735%  —0.24¢056 4 0.24¢3%
0.48¢0%6 — 0.48¢73%%  —0.11£%% + 1.11¢=3

8.4.4 System Response Computation

One advantage of placing system equations in a state-variable form is that it is well
suited to digital computer calculations. Computers are not particularly efficient at
equation manipulation, Laplace transformation, and the like, but they excel at such
repetitive tasks as matrix addition and multiplication. The capability of simulating a
system, that is, investigating and testing its performance by modeling, is important
to the designer, particularly for the common situation in which the plant is expensive
and the design must be correct when it is first installed.
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The state transition matrix can be approximated by an (m + 1)-term Taylor series
1 1
O(A) =T+ A(Af) + EAZ (AP 4.+ (—') A™(AD™
m!

The convolution integral depends on the state transition matrix and on the input, both
of which can be functions of time. However, if At is a very short time, then #(¢) can
be removed from the integral so that

Convolution integral = D(At)Bu(z)

D(At) = IAt + %A (AD? + (%) A% (An)?

1 m m+1
oot (—(m+ 1)!) A™(Ar)

For sufficiently small time increments Az, one can start with the initial state x (0)
and calculate x (At) as follows:

x (A =+ AAH)x(0) + (BAH)u(0)

then x (2At) may be calculated from x (Azt),
x(2A1) = (I + AAr) x(At) 4+ (BAt) u(Ar)

and so on, obtaining approximate solutions for the state,
x{(k+1) At} = (I + AAt) x (kAz) + (BAt) u (kAr)

For example, the response of the first-order system

X=—-2x+u
y=x
with
x(07)=10
u(t) = 3sint

is approximated by

x{(k+1)Ar} = (1 — 2A1) x (kAr) + 3At sin(kAr)
with

x(0- A1) =10

Representative computer-generated plots of x(¢) are given in Figure 8.10 for
various choices of At. For a sufficiently small time increment At, the approximate
response is very nearly the actual system response.
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)0 Lo OF 0
Approximation Approximation Approximation
- I T L 1 T~
| 12 - | L2 = I PR — —

f f
(@ ®) (©)

Figure 8.10 Computer-generated response plots for a first-order system. () Step size Ar =
0.4. (b) Step size At = 0.2. (c) Step size At = 0.05.

Another example system is the following:
X | -2 1 X1 2

with

X1(0_) _ —4
xO)| | 5
u(t) = cos 0.25¢

It is approximated by
xi{k+D A} | [ 1-2A1 At || x1(k Ar)
x{k+DA}| | =3Ar 1 || xkAr

+ l:_zl:l At cos(0.25k At)

o 1| miE+ A

y{k +1) A} =1 2][x2{(k+l)At}]

or
%1 {(k+ 1) At} = (1 — 2A1) x; (k Af) + Atxy (k At) + 2At cos(0.25k Ar)
%2 {(k + 1) At} = =3Atx; (k At) +x (k At) — At cos (0.25k At))
y{(k+1) At} = x; {(k + 1) At} — jx2 {(k + 1) A1}

with
x1(0- Ar) = —4
20 A1) =5

Computer-generated response plots for this system are given in Figure 8.11,
where At = 0.05.
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u(t) x1(D

5F 5'~
. il
2 4 6 - y 2 4 -
-5t -5
¥(0)
X v
6
) ] 1 /—\ TN e
ZW e 2 6 -
-5t -5

Figure 8.11 Computer-generated response plots for a second-order system.

Improved accuracy and reduced computation time may result from using more
involved approximations—for example, matrix power series, predictor correctors, or
Runge—Kutta methods.

U DRILL PROBLEMS
D8.12 For the following systems, develop discrete-time approximation equations
using the indicated time steps Az.

(@)

HEERMENE
=5 -]

At =0.2
Ans.
1.6 0.2 0.2
D At] = A
x[(k+1) At] |:0.4 O.S]X(kAt)+l:0.8]u(k t)
y=[=3 — 1]x(k A?)
(b)
i] 1 2 3 X1 1 -2
=17 =2 =3||x|+]|-1 3[“‘}
i 6 0 4||x 0o 4|L*
x1
y=[5 -2 1]| x
X3

At =0.01
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Ans. 1.01 002 003
x[k+1)Ar]=]007 098 —0.03 |x(k Ar)
006 0 104

0.01 —0.02
+| —0.01 003 |uk Ar)
0 0.04

y=I[5 -2 1lx(k Ar)

D8.13 For the set of state equations
.7'61 _ -2 1 X1 + 1 u
Bl -3 of] = 4
x
y=I1 —1][ ‘]
X2

a discrete-time approximation is

xi{k+ DA} | | A=2A1) At || xi(k Ar) At
["2 (1) A’}] - [ —3ar 1 ] [xz(k At)] " |:4At:|u(k A

xi1(k At)
k At) = -
yk Aty =1 Hl:xz(kAt):l
If
x1(07) 10
= =2 >
|:x2(0‘)] |: 0 :| and u(?) t>=20
calculate approximate values for x(At), x(2At), and x(3Ar) for the following:
(a)
At =02
Ans. [ g4 3.36 1.09
—44 |’ —6.64 || —7.06
(b)
At =0.1

Ans. [ g9 6.54 6.37
22 || =386 || =5.02
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8.5 Stability

For asymptotic stability
eigenvalues must be in the
LHF.

©
At =0.02

Ans. ' g4 967 [ 9.503
—044 |’ —087 || =129

A system is stable if its eigenvalues (or characteristic values) are in the left half-
plane (LHP). We want to expand upon this issue and formally define various notions
of stability.

8.5.1 Asymptotic Stability
Consider a system represented in state space:
x=Ax x0) =xp

The system is said to be asymptotically stable if all the states approach zero with
time—that is,

x(t1) =0 as t— 00

Now, let us diagonalize the system. This simplifies the task as it will allow us to look
at the components of the system one at a time.

x(t) = Pz(t) — z(t) = Az(1)

where A is the diagonal matrix of eigenvalues of A—that is,

A0 - 0
0 XA

A=]| - 0 -
. . . 0
0o 0 - A,

The individual subsystems are
zi (1) = Aizi (1)

The solution to this first-order system is
z; (t) = €"'z;(0)

Clearly, if the eigenvalues of the system have negative real parts (i.e., they are in the
LHP), the individual states go to zero asymptotically with time: z;(#) — O implies
that z(t) — 0. Because x(t) = Pz(#), we conclude that x(¢) — 0. Hence, it has
been proved that the system is asymptotically stable if its eigenvalues are in the LHP.
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8.5.2 BIBO Stability

Another notion of stability that has been used throughout the book, starting from
Chapter 2, is input—output stability. This concept is also referred to as bounded-input,
bounded-output (ot BIBO) stability. BIBO stability means that the system output is
bounded for all bounded inputs. This is,

[u(®)| < N <00 = |y(t)] < M < oo for all bounded inputs

where M and N are some finite bounds for # and y. Examples of bounded functions
~ are negative exponentials and sinusoids. For example,

e <1 or [sin@®/<1—>M=1 or N=1

The condition that guarantees BIBO stability is the familiar condition that all the
transfer function poles be in the LHP.

What is the difference between the two definitions? Does one imply the other?
The answer is obtained from looking at the expression for the transfer function in the
terms of state space matrices:

N(s) ) C adjoint[s] — A] B

T(s) = DG) =C(I—-—A)y" " B= 5T — 4|

Recall that eigenvalues of the system are found from the equation
sI — Al =0

Because this is also the polynomial that appears in the denominator of the transfer
function, we can draw the following the conclusion:

In the absence of pole-zero cancellations, transfer function poles are identical to the
system eigenvalues, hence BIBO stability and asymptotic stability are equivalent.

The pole—zero cancellation condition is important for the equivalence. This is
because, poles are formally to be identified from the simplified transfer function (i.e.,
after all the numerator and denominator common terms have been canceled out). For
instance, consider the following situation,

) s—1
5)= —————
-DE+2)
in which 7 (s) has one pole at s = —2. The term (s — 1) must be canceled out before

the poles and zeros are identified. To prove that the transfer function does not have a
pole at 1, take the limit of 7 (s) as s approaches 1.

s—1 1 1

?_?%(s-l)(s+2)=3‘_‘3}2s+1 =37

lim T'(s) =
s—1

where we have used L’Hdpital’s rule. It is concluded that the system is BIBO stable
because it has no poles in the RHP or on the imaginary axis. To determine asymptotic

This system does not have a
pole at s=1.
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stability, we need to obtain a state space realization. One realization is given by

|1 2],
X = 1 0 X 0 U
y=[1 —-1lx

The system eigenvalues are at 1 and —2. Because of the eigenvalue of 1, we
conclude that the system is unstable in the asymptotic sense. Such contradictory
answers to system stability occur only when the system transfer function has pole—
zero cancellations in the RHP or on the imaginary axis. What do we make of the
system stability in such cases?

We can make some progress toward the answer by looking at the diagonalized
system given by

_[roo], 11
*Tlo 2|73 1|
y=[0 -3x

Observing the signal flow graph of the system shown in Figure 8.12, we note
that the unstable mode at 1 is not connected to the output. Since the transfer func-
tion describes the input—output properties of the system, it is not surprising that it
does not detect the offending mode. Imagine an experiment where you apply an
input to the system, and connect your measurement instrument to the output. Even
though the first state is practically “blowing up,” you will not be aware of it. This
is what is happening here. Fortunately, such pathological cases do not happen very
often in practice. After all, because of modeling uncertainties and component toler-
ances, it is practically impossible for a system to have its poles and zeros exactly
at the same place. We will see in the next section that this issue is related to sys-
tem controllability and observability properties, and that it can be detected and
avoided.

State space description of systems are called internal representation because
they allow us to observe the internal structure of systems, whereas transfer function
description is an external representation. In the case of our example, the state space
representation allowed a more accurate description of the system.

Figure 8.12 (a) Signal flow graph of a system with pole—zero cancellation. (b) Diagonal
representation of the system.
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Going back to the question of stability, we conclude that the preceding system
is practically unstable, because any nonzero initial conditions on the first state will
grow indefinitely.

8.5.3 Internal Stability

Asymptotic stability is a notion that is based on the state space description of sys-
tems, whereas BIBO stability is based on transfer function description. There is
another notion of stability, called internal stability, that is based on transfer function
description and is stronger than BIBO stability. To define it, we need to consider the
general block diagram in Figure 8.13. This figure is a more realistic diagram of feed-
back control systems. The blocks represent the plant, the controller, and the sensor
dynamics. Besides the usual reference (or command) input, the ever-present noise
and disturbance inputs are explicitly included.

Internal stability requires that all signals within the feedback system remain
bounded for all bounded inputs. This is equivalent to the requirement that all possible
transfer functions between all inputs and outputs be stable. It can be shown that only
nine transfer functions between the three inputs (R, D, N) and the three outputs taken at
the output of the summing junctions (U, V, W) are sufficient. In practice, determining
the nine transfer functions and checking them for stability is still a major task. The
following result, a necessary and sufficient condition for internal stability, will be used
as a test for internal stability. The feedback system is internally stable if and only if
the transfer function 1 + K G H has no zeros in the RHP (including the imaginary
axis), and the product of KGH has no pole—zero cancellations in the RHP (including
the imaginary axis).

As an example, consider the case of

1 s—1
= — H =
G(s) 1 ) Py

Because there is an RHP pole—zero cancellation in KGH, the system is not internally
stable. To show that at least one signal will blow up, note the following transfer
functions:

Ys) 1 Y(s) s+1
R(s) s+2 D) G-DE+2)

and K=1

D

+
17

Figure 8.13 Block diagram of a feedback system showing distur-
bance and noise inputs,
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Note that in traditional BIBO stability, it is the transfer function between R and
Y that is examined. This transfer function is clearly stable. However, the transfer
function between the disturbance D and output Y is unstable. Hence, the slightest
disturbances in the system will grow unbounded. For all practical purposes, the system
is unstable.

The summary of our discussion of stability is that internal stability is the true
stability requirement that must be imposed on feedback control systems. A design
lesson that can be drawn from our discussion is the following. We must never cancel
the unstable (RHP) plant poles by unstable (RHP) compensator zeros, for this will
render the closed-loop system internally unstable. This caution is warranted because
canceling poles in undesirable locations by compensator zeros and replacing them
by poles in more desirable locations is commonly used by control system design-
ers. This is an acceptable and effective technique, but only for poles that are in
the LHP.

U DRILL PROBLEMS

D8.14 Determine stability of the following systems. Check for BIBO, asymptotic,
and internal stability.

@ T1 o 0
x=|i1 _1:|x+|:1 u

y=I[1 1l

(b) -1 10 1
X = 0 -1 O|x+1|1|u

0 00 1

y=[1 1 1]x

(C)Jé—- 10 x4+ o u
1o 1 1
y=[1 1lx+u

Ans. (@) T(s) = 1/(s + 1), eigenvalues = 0, —1; BIBO stable but
not asymptotically stable; (b) T(s) = (352455 + 1)/[s(s + 1)]%
eigenvalues = 0, —1, —1; neither BIBO nor asymptotically
stable; (c) T(s) = 1; eigenvalues = 1, 1; BIBO stable but
not asymptotically stable

D8.15 Consider the feedback control system of Figure 8.15.

Let G(s) = 1/(s — 1). Determine if the system is internally stable in each case.
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Figure D8.15
s—1
() H1=m, Hy=1, Hb=1
s—1

Hy=1, Hy = , H3=1

®) H 2= B
s—1

H =1 H,=1, H;=
() Hy 2 =TTl

Ans. (a)no; (b)no; (c)no

8.6 Controllability and Observability

In the preceding chapters, a control system was operated upon to provide acceptable
phase margin, rise time, or other figures of merit. Perhaps the system is constructed
in a way that conspires to thwart efforts at improving performance. By using state-
variable methods it is possible to answer fundamental questions about the ability of
the control-system designer to effect meaningful improvement in performance and to
generate needed sensor measurements. The terms controllability and observability,
respectively, address those needs.

A system is completely controllable if the system state x (¢7) at time ¢ can
be forced to take on any desired value by applying a control input u(¢) over a
period of time from 7, until ¢,.

The definition does not restrict the choice of u(z). The idea is that it is possible
to move the system state to any desired destination. Perhaps the system is (or is not)
constructed in a way that allows control to take place. A test for controllability can
easily be constructed.

A system is completely observable if any initial state vector x(#) can be
reconstructed by examining the system output y(¢) over some period of time
from 7, until ¢;.

There are no restrictions placed on the output. The definition indicates that any
earlier value of the state vector is determinable by watching the output y(7). An auto-
mobile would be considered completely observable if, by monitoring speedometer
(for speed), odometer (for distance), and steering wheel position (for turning), it is
possible to determine where the car was parked before being driven.

For systems of certain kinds (with diagonal A matrices), the tests for control-
lability and observability are easy to apply. For a nondiagonal system, a test can
also be constructed. For a system that is completely controllable, methods will be
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developed by which an appropriate control can be derived. Similarly, for a system
that is completely observable, an observer will be designed to carry out that task of
state reconstruction.

Figure 8.14 shows that controllability is tested assuming a zero-state response
and that observability is tested assuming a zero-input response. The tests provide a
worst-case scenario, where the initial condition does not necessarily aid in control and
an input does not necessarily aid in reconstruction of an earlier state. A system that
passes the controllability test is usually applied in an environment that has a nonzero
initial condition. Similarly, a system that passes the observability test (observers will
be considered shortly) is usually applied in an environment that includes an input
and control.

Consider the following system:

J'c1=x1
Xo=2x+u

The objective is to force the system states to go to zero. This is another way of
stating that we want to make the system asymptotically stable, a common objective.
According to definition of controllability, this is an achievable objective if the system
is controllable. The solution of the system is

x1(t) = €'x:1(0)

t
x2(1) = €% x2(0) + f 2 y(1)dt
0

QObserve that by appropriate choice of the control signal «, the second state can
be driven to zero. The first state, however, is uncontrollable. It will always blow up,
unless its initial condition is zero. Upon examining the system signal flow graph,
shown in Figure 8.15, it is clear that the control signal is not even connected to the
first state, so it cannot affect it in any way. Because the system is in decoupled form,
its eigenvalues can be obtained by inspection; they are 1 and 2. These are also called
system modes. When the system is in decoupled form, we can be more specific: The
first mode is uncontrollable, whereas the second mode is controllable. Because the
objective was to drive all states to zero, the system is declared to be uncontrollable.

% | Linear | Output 1

x(tp) =0| system WS X ()
1
*(t)) | Linear | Output U(s) o—»——t:ja Xo(s)
u=0 system

2

i

Figure 8.14 Significance of Figure 8.15 Signal flow graph of an
controllability and observability uncontrollable system.

tests. (a) Test for controllability.

(b) Test for observability.
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How to determine the control signal « to drive the states to arbitrary values. will
be discussed later. Driving the states to zero (i.e., stabilization), howeyver, is easy. For
instance, in the preceding example, if we choose u as

u = —kxz
we get
J'Cz . 2x2 - ka = (2 - k)xz

Clearly if the gain k is greater than 2, this state will indeed go to zero. The idea behind
this choice is to feed the state back to the input using an appropriate gain, This is
called state feedback, and more will be said about it in the next chapter. That this
scheme works is not surprising—after all, feedback has been used for stabilization
throughout the book.

Determining controllability and observability is easy when the system is in
diagonalized form. To see this, consider the following general example for SISO
systems.

X1 A 0 0 O X1 1
).62 0 A.z 0 0 X2 1
| = + u
X3 0 0 » O X3 0
J‘C4 0 0 0 )\.4 X4 0

y=[1 01 0l

Observing the input connections in Figure 8.16, we conclude that modes 3 and 4 are
uncontrollable because they are not connected to the control input. Also, modes 2 and
4 are unobservable because they are not connected to the output. In general we can
always categorize the system modes into four categories: controllable and observable

Figure 8.16 Signal flow graph of
a system showing controllable,
observable, uncontrollable, and
unobservable modes.

Y(s)
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(as in mode 1), controllable but unobservable (as in mode 2), uncontrollable but
observable (as in mode 3), and uncontrollable and unobservable (as in mode 4).

This information is also available from examining the rows and columns of B and
C matrices. Uncontrollable modes correspond to zero rows of B: unobservable modes
correspond to zero columns of C. The latter applies to multiple-input, multiple-output
systems with distinct (i.e., nonrepeated) modes in diagonalized form.

For systems in general (nondiagonalized) form, these properties cannot be deter-
mined from the signal flow graph (or block diagram). Similarly, zero rows in B or
zero columns in C do not imply anything in general.

8.6.1 The Controllability Matrix

Fortunately, there is a much simpler method of determining system controllability
than diagonalization. It can be shown that an nth-order system, with or without
repeated modes (eigenvalues),

X = Ax+ Bu
is completely controllable if and only if its controllability matrix
Mc=[p | aB | ... | a1 B]
is of full rank. The controllability matrix consists of the columns of B followed by

the columns of AB, and so on.
For the system

JE:1 -2 1 2 X1 0 4 u

Hl=| 4 0 3 x2+—50[u1]

A 1 -1 0| x 0 o|L™
Ais3 x 3,s0

M.=[p | aB | A2B]

Upon using
2 1 27 o 4 -5 -8
AB=| 4 0 3||-5 0|=]| 0 16
| 1 -1 0]] 50 5 4
2 1 27]|[-5 -8 20 40
A’B=AMAB)=| 4 0 3 0 16|=|-5 =20
|1 -1 0] 5 4 -5 —24
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we can write

0 4 -5 -8 20 40
M.=(-5 0 0 16 -5 -20
00 5 4 -5 24

To be of full rank, the controllability matrix must have three linearly independent
columns, which it does, since

0 4 -5
-5 0 0]#0
00 5
The system
Jh _ 2 3 X1 + 1 "
JE2 - 6 -1 X2 -2
has controllability matrix

M.=[p | aB]

where
2 3 1 —4
B = =
Thus we have

which is not of rank 2, since

1 —4

2 5|70

This system is not completely controllable.

Note that for SISO systems the controllability matrix is square. From matrix
algebra, we recall that a square matrix has full rank if and only if its determinant is
not zero. Therefore, in the SISO case, the system is controllable if and only if the
determinant of M, is nonzero. The controllability matrix, although easy to apply, pro-
vides only a “yes or no” answer on system controllability. To get specific information
on individual modes, you have to diagonalize the system.
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8.6.2 The Observability Matrix

To determine whether a nondiagonalized nth-order system is completely observable,
its observability matrix

F o]

M,=| —"

may be formed. The system is completely observable if and only if the observability
matrix is of full rank, that is, if M, has n linearly independent rows.
For example, the system

X1 210 X1

n|l=|1-3 01 x|+ 1|«

)':3 4 0 O X3
X

y=[0 0 11| x
X3
is completely observable:

2 1

CA=[0 O 1](-3 O =[4 0 0]
4 0

CA’=(CA)A=[4 0

[=]
—
1 © = ©
|
E QR ULI &)
oSO -
o o= o

=[8 4 0]

M, =

o O
A OO

1
0
0

As another example, consider the system

HEEINRHE
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1 -1
-2 2

M, =
‘ 0 -1
0 2

The observability matrix has two linearly independent rows (1 and 3).

8.6.3 Controllability, Observability, and Pole-Zero Cancellation

It can be shown, in general, that uncontrollable or unobservable (SISO) systems will
have pole—zero cancellations in their transfer functions. We will not prove this fact,
but it will be investigated by an example. Consider the second-order system

. (10 by

y= [Cl 47} ] x
The transfer function of the system is given by
(b1 + baca)s — (2bicy + bacy)

(s —D(s—2)

Now, if b)) = 0 (or ¢; = 0), the mode at 1 becomes uncontrollable (or unobserv-
able) and the pole term (s — 1) gets canceled in the transfer function. Similarly, when
b; = 0 (or ¢; = 0), the mode at 2 becomes uncontrollable (or unobservable) and the
pole term (s — 2) will get canceled out.

The example demonstrates that lack of either controllability or observability
will lead to pole—zero cancellation in the transfer function. Conversely, pole—zero
cancellation in a transfer function implies either uncontrollability or unobservability.
As another example, consider the system

el

T(s) =

y=[a 1]
T(s) = (b2 +c1)s + (—2c; — by + bacy)
a (s —D(s —2)

When b, = 0, the term (s — 2) is canceled. Hence, the corresponding mode is
either uncontrollable or unobservable. Let us see if the system is observable.

[5] 1
M, =
’ [Cl 2+c1:|

Because the determinant of the observability matrix is nonzero, the system is observ-
able. Consequently, the term(s — 2) corresponds to an uncontrollable mode. Also,

Lack of controllability or
observability leads to
pole-zero cancellation in the
transfer function.
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Never cancel RHP poles or
zeros.

observe that the transfer function becomes 0 when b; = ¢; = 0. This strange case
occurs because there is no path from the input to the output when both parameters
are zero.

Our earlier caution against unstable pole—zero cancellation is worth repeating
here. When canceled by a zero, an unstable pole does not really disappear, it simply
becomes either uncontrollable or unobservable. In the first case, you will observe the
state blowing up, but you cannot do anything about it. In the second case, you will
not even be aware that something is wrong because the unstable state does not appear
at the output. In either case, the results are disastrous.

8.6.4 Causes of Uncontrollability

What are some of the causes of uncontrollability or unobservability? One cause, as
has been indicated, is pole—zero cancellation. Another source of problem is symmetry
in the system. For instance, consider the second-order system

[ (]

y=[1 1l

The system is neither controllable, nor observable. In fact, the diagonal realization
and transfer function of the system indicate that the pole at the origin is canceled out.

#1=0
2s _ 2
ss=2) s—2

X2=2x+u T()=

y=2x

In physical systems, such symmetry is rare. The preceding two cases either can
be avoided or are unlikely to occur in practice. Another common cause is redun-
dant state variables. During the process of modeling complex systems, one may
introduce unnecessary or redundant state variables. In this case, lack of controlla-
bility/observability indicates modeling errors and can be corrected by proper system
modeling. The following example demonstrates the case of modeling error.

Consider the simple RL circuit shown in Figure 8.17. The circuit input is a
voltage source, and the output is the current flowing through the inductor. From basic
circuit theory, we know that the correct equation is given by

di(t)
dt
If we let x = i(z), then we have

ut) = i(t) +

X=-x+u
If the output is the current, we have

y=_x=i
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0
Y(s) 1
T = =
©=Te =5+
Now, it is also known that current is the rate of flow of charge. Suppose electrical
charge is selected as a state variable—that is,

X1 =49
.7C2=q'=i
X1 =X
Xy = —Xo+u
y=2xz

so that

{0 1 |0 _
A_[O _1] B—l:l:l C=[0 1]

The transfer function between the current and the input is given by

Y(s)_ oanelp ) _ 1
U eI B= oy T i

The observability matrix of this second-order model is

M0=|:0 1i|—>|M,,|=0

0 -

which is singular (i.e., the model is not observable). This does not mean that the
circuit is unobservable. It simply indicates that the model is not good. In fact, the
extra state variable defined for charge is redundant for our purposes.

Another common cause is inappropriate or insufficient control actuators or sen-
sors. The latter cause is an important system design issue. For a given control objective,
we need an appropriate model and a sufficient number of control actuators and sensors
that are appropriately positioned. To illustrate this issue, consider the classic problem
of stabilizing an inverted pendulum on a moving cart shown in Figure 8.18.

An incorrect model can
result in an
uncontrollable/unobservable
realization.

I
|
|
u(t) (j) i L=1
Q Q
Figure 8.17 RL circuit: R = Figure 8.18 Inverted pendulum on a moving cart.

1,L=1.
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Inverted pendulum on a cart
example.

Suppose the objective is to balance the pendulum and stop the cart. A linearized
model is given by

0 —a 0 b
x=10 0 1]|x+ 0 |u
0 a 0 —b2

The state vector components correspond to cart velocity, pendulum angle, and
pendulum angular velocity, respectively. To meet the objective, one of the state vari-
ables is measured and fed back. That signal is used to drive a motor that will move
the cart to stabilize the system. Note that asymptotic stability implies that all states
will approach zero, which means that the pendulum will be balanced and the cart will
stop moving.

We can show that this system is controllable. Now the question is where to place
the sensor—that is, which state should be measured. If we measure the pendulum
angle and use that as the feedback signal, we get

y=[0 1 0]x

The system is not observable in this case because

010
M,|=]0 0 1|=0
0 a O

Intuitively, we can imagine that it is possible to balance the pendulum while the cart
is still moving. Hence, it is obvious that using the pendulum angle as the feedback
signal would not be a good choice. Similar arguments can be made against measuring
the pendulum angular velocity. Finally, by using the cart velocity as the measured
signal—that is,

y=[1 0 O]x

we can verify that the system is observable because

1 0 0
IM,|=|0 —a 0 |=d>#0
0 0 —-a

Therefore, it is theoretically possible to meet the design objectives by measuring the
cart velocity.

The preceding example demonstrated one common cause of uncontrollabil-
ity/unobservability. As system complexity increases, we may no longer have the
benefit of our intuition, and we must resort to system concepts.

In general, if system design issues are well thought out, and adequate models
are obtained, we need not worry about controllability/observability issues in prac-
tice. These issues will appear frequently as theoretical conditions for state space and
optimal design, however.
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3 Computer-Aided Learning

System stability can be obtained by looking at the poles or eigenvalues of systems.
MATLARB has two commands to find poles and zeros. They are “pole” and “tzero.”
The “pole” command returns the poles and “tzero” returns the so-called transmis-
sion zeros of systems. If the A matrix is available, we can determine asymptotic
stability by finding the eigenvalues of A using the “eig” command. For the system

defined by
-2 11 1
xX=1-3 0 0 |x+]1]u
0 00 1
y=(2 -2 1)
we get
>>pole(g)
ans=

-1.0000+1.4142i
-1.0000-1.4112i
0
>>eig(a) % same as the poles
ans=
-1.0000+1.4142i
-1.0000-1.4142i
0
>>tzero(g)
ans=
-6.6458
-1.3542
The system controllability and observability can be determined by examining the
corresponding matrices. MATLAB has ctrb and obsv to obtain them. For the
above-defined system, we get

>>CO=ctrb(a,b)

C0=

i 0 -3

1 -3 0

1 0 (o}
>>0B=obsv(a,c)
OB=

2 -2 1

2 2 2
-10 2 2

‘We can then use det and rank to find the determinant and rank of these matrices.
Sometimes systems have pole—zero cancellations (owing lack of controllability
and/or observability). To obtain the so-called minimal realization of the system,
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MATLAB has the “mineral” command. As an example, consider the third-order
system where all matrices are all Ts (similar to the example in the book).

>>a=ones(3,3) ;b=ones(3,1) ;c=ones(1,3);d=0;
>>g=ss(a,b,c,d);
>>rank(ctrb(a,b)) % system not controllable
ans=
1
>>rank (obsv(a,c)) % system not observable
ans=
1
>>tf(g) % transfer function has 2 poles and zeros at the origin

Transfer function:
3872

873-38"2-3.077e-0156s+1.972e-031

>>eig(a) % system not asymptotically stable
(double eigenvalues at the origin)

ans=

0.0000

0.0000

3.0000
>>gmin-mineral(g); % after pole—zero cancellation
2 state(s) removed
>>tf (gmin)

Transfer function:

C8.2
(a) Determine the stability of the systems defined in Drill Problem 8.14.
(b) Determine the stability, controllability, and observability of
a=[-1-20;120;-2-1-31; b=[1;0;0]; c=[101]; d=0;
(c) Use MATLAB to do drill Problem 8.17.
Solution of state equation can be obtained using the “Isim” and “initial” commands.
LSIM(SYS, U, T, X0)

plots the response of a state space system with input U (T') and initial state Xo. The
time sequence 7' must be defined as a vector, and the input must be of the same
size as T. Here is an example:

g=tf(1, [1 1.4 11)
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Transfer function:
1

s72+1.4s + 1

gs=ss(g);
t=linspace(0,pi,100); u=sin(2*t); x0=[-2 3];
lsim(gs,u,t,x0)

When invoked with left-hand arguments,
[Y,T,X]=LSIM(SYS,U,T,X0)
returns the output Y, the state vector X, and time vector T used for simulation,
and no plot is drawn on the screen.

[y,t,x}=lsim(gs,u,t,x0);

subplot(211), plot(,x(:,1)), subplot 212), plot(t,x(:,2))
The “initial” command is used to solve for the zero input response (ZIR) of state
space systems: X = Ax subject to initial conditions:

INITIAL(SYS,XO,TF) simulates and plots the time response from ¢ = 0 to the
final timet =TF

INITIAL(SYS,XO0,T) specifies a time vector T to be used for simulation

[Y,T,X]=INITIAL(SYS,XO0, - - ) returns the left hand side vectors but does not plot.

initial(gs, [-1 21)
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C8.3 Repeat Drill Problem D8.10 using the “Isim” command.
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8.7 Inverted Pendulum Problems

One of the most celebrated and well-publicized problems in control is the inverted
pendulum (broom balancer) problem. This is an unstable system that may model
a rocket before launch. Almost all known and novel control techniques have been
tested on the inverted pendulum (I P) problem. In this section we discuss models of a
variety of IP-type problems. The IP problem is also highly nonlinear, but it can easily
be controlled by using linear controllers in an almost vertical position.

Some of the varieties of IP are single pendulum, single-rotary pendulum, dou-
ble side-by-side pendulum, double-pendulum, double-rotary, and triple-pendulum
problems.

We start with a derivation for a single IP problem (see Figure 8.19).

The horizontal and vertical coordinates of center of gravity of the mass are
given by

yi=x+1siné

ys =lcos 8
Newton’s law in the horizontal direction gives us

U =M% +m¥; = Mi +m¥% + ml(—sin@ - 62 4 cos 6 - )
or

| (M + m)i —mising - (6%) +cosf -8 =u |

Newton’s law for the rotational motion about the pivot gives

m¥y1l cos® — my,l sin@ = mglsind
or
(cos ) - mlE + mI*(—sin@ - 6% + cosf - §) cos 6
+miI2(@sin@ + 6% cos @) sind = mglsiné
which simplifies to

| m - cos @ +mlf = mgsinGJ

These are the nonlinear IP models. If we assume that 6 is small (i.e., we want to
control the IP near its vertical equilibrium position), we can linearize these equations.
Recall that for small 4, sinf =~ @ and cos @ = 1, we get

X+16 =gb
(M + m)x —mlf®+0=u
Assuming that for small 8, 62 is negligible, we get our final IP equation.

(M+m)i+6=u
¥+10=g6

Linear IP equations.
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Obtaining transfer functions, we get

(M + m) s? 52 X(s) | | u(s)
s? Is>—g |l 6] | 0

X(¢s)| |Is°—¢g —s5? u(s) | 1

0Gs) | | —s* (M +m)s? 0 | A(®s)

A(s) = (Is* — ) (M + m)s® — s*

= s’[(M 4+ m)( Is*—g) — 1]

X(s) _ Is2—g 6(s) —s?
UG) A@s) ° U@s) A

The poles are

_ 2 _ M+m)g+1
[(M4+m) g+1]=(M+m) Is =>s_:|:/—-——l(M+m) ,0,0

If M >> m, the poles are at s = +./g/1, 0, 0 (Figure 8.20). Also if / is small (short
pendulum), it is more unstable (RHP pole farther into the plane), Simple experiment
confirms that longer pendulums are easier to control, too.

Also notice that the transfer function 6(s)/ U (s) has an unstable pole—zero can-
cellation (double pole at the origin, s? term, cancels out). This indicates that the system
cannot be controlled by measuring 6 alone. The transfer function X (s)/U (s) does
not have this problem, but it has RHP zeros (this makes it more difficult to control
the system). Hence, stabilization is possible by measuring cart position.

- x
y
2 \[E/l_
X *—K
e
— U
M
O O,
Figure 8.19 The inverted pendulum. Figure 8.20 Poles of the inverted pendu-

lums
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Let us now obtain the state space representation of the IP, rewriting the differential
equations:

g0 —x
)

(M+m)5c'+( )=u=>l(M+m)5c'+g0—jc'=lu

-8 . .. .
(u )+l(9:g9=>u—6+l(M+m)9=g(M+m)9
M+m

Simplifying, we have
XlleM+m)—1]+ g0 =lu
GUM+m)—1]—gM+m)b = —u

and
X+ b = Blu
6 —y0 =—Bu
where
g 1
=, = -, =M
= mEm -1 P imrrm-o1 YT WMtme
Defining x; = x, Xy = d, X3 = X, X4 = &, We write
J;Z]=X3
Xy = X4
.7-61 0 0 1 0 X1 0
. X2 0 0 01 X3 0
B=—amtplu= L 0 —a 0 0||x|T| al”
X4 0 y» 00 X4 -8B

X4 = yx2 — Pu
The output equation depends on what we measure. If we measure the cart position
and the pendulum angle (single input, multi output) problem, we get

X1

y1_1000 X2
v |01 0 0f]|xs
X4

Measuring only the pendulum angle (single input, single output), we have

X1
y=[0 1 0 0] | ™
X3

X4
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and sensing only the cart position gives

X1
y=[1 0 0 0™
X3

X4
We can verify system controllability by noting that det C # 0
0 gl 0 —apl
0 -8 0 y8l
Bl 0 —aBl 0
—B 0 gl 0

Checking observability: is a two-step procedure.

C=[b A-b A%.b A3‘b]= ,detC #0

1. Sensing pendulum angle: C =[0 1 0 0]

0 1 0 0
0 00 1

0= 0 —a 0 0 ,detO =0
0 0 0 —«

This is reflected in pole—zero cancellation in the 8(s)/u(s) transfer function. We
cannot achieve stabilization (all states going to zero asymptotically) by measuring
only the pendulum angle.

2. Sensing cart position: C =[1 0 0 0]

1 0 0 0
0 0 1 0

0= 0 —o 0 0 ,det@ #0
0 0 0 —«

In this case, the system is both controllable and observable [no pole—zero cancellation
in the X (s5)/U (s) transfer function], and we can stabilize the system.

Note that it makes a big difference which state variable we measure. This is
called the “sensor location” problem. In practice, sensitive potentiometers are used
to measure both 6 and x.

We now consider a slight variation of the IP known as the rotary inverted pendu-
lum (RIP) problem (Figure 8.21). The pendulum, standing on a short arm, can rotate
in one plane about a hinge, with a possible potentiometer to measure its angle ¢. The
arm itself can also rotate through an angle of 8.

This version of IP is easier to build very compactly. Regular IP is usually built
on a moving car platform or on a track. The track version is large and bulky because
the track must be long enough to allow the pendulum to move a distance sufficient to
stabilize. The RIP replaces the linear track with a rotating arm, and the arm can rotate



INVERTED PENDULUM PROBLEMS

607

—e
15~ __________Le;
——

Figure 8.21 Therotary inverted pendulum.  Figure 8.22 Parameter definition for RIP.

as many degrees as desired to stabilize the system. In state space form the linearized
equations for the RIP (see Figure 8.22) are given by

1 0 01 0][x 0
Bl [0 00 1([]|x 0

il |0 —a 0 0] xs + (r/DB
X4 0 y 0 O] | xs_ -B

where the states are x; = 6, x = ¢, x3 = 6, x4 = ti), and g = 1/J,
o =mrg/J,and y = (J + mr?/J1) g, in which

J = moment of inertia of the arm
r = length of the arm

m = pendulum mass

! = length of pendulum

g = gravity constant

Note that the equations are dynamically similar to the rectilinear IP system, and
similar system properties are expected. Itis possible to control the system theoretically
by using measurements of 8 (i.e., x; ). In practice, it is relatively easy to control the
system by measuring both 6 and ¢.

In the double side-by-side inverted pendulum problem (Figure 8.23), we have
two pendulums of equal mass m with lengths /; and /> mounted on a moving cart.
The hinge lines of the pendulums are parallel.

The equations of motion are given by

MX = -~mg6 —mgb, +u
m% = mg6; —mlif; i=1,2
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Figure 8.23 Double side-by-side inverted pendulum.

Substituting for ¥ from the first equation into the second set of equations (to eliminate
X in the second set) gives

. o y 1 mg

6 = —6 -0 — — = —, =

1 112+lll llﬂu ¥=—r ¥ at+g
.o y 1 |
2=t B By

X =—ab —ab) + Bu

Upon defining state variables as x; = x, x, = 0y, x3 =6, x4 = %, x5 = 0y,
and xg = 6, we get the following state equations:

. [o o o010 0]._ _ 0
1 0o 0 o001 0]|l™ 0
2 0 0 o000 1][™ 0
f=0—a—a000x3+ B | u
X.

S o £ 2 o900l _B
X5 L L X5 [
| % 0o 2 Y o0 oflxd |_E

| L L i | L]

Note that the A, B matrices can be partitioned as follows:

[3t5] o[

where 7 and 0 stand for identity and zero matrices of appropriate size. This makes it
easier to compute the controllability matrix
C_[o B 0o 4B o A2B]

B 0 AB 0 A’B 0
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Figure 8.24 The double inverted pendulum.

It is left as an exercise to show that the system is controllable only when I; # I5. The
reader can also verify conditions for observability under various sensor assumptions
(sensing x, x and 6,; 61, 6; and 6,; x and 6, and 8,).

‘We now consider two pendulums, one on top of the other, the double inverted
pendulum problem (DIP) (Figure 8.24). Possible sensor variables are the cart posi-
tion, the angles of the pendulums with respect to the vertical plane (61, 8), and also
measuring the angle difference between the pendulums (angle ¢). Researchers have
indicated successful control measuring x, 61, and ¢, and even measuring only x and
8 (which means stabilizing both pendulums without measuring the apparently crucial
angle 8, or ¢). The linearized equations of motion are given by:

ri+rb +rb=u
1461 + rsby + ra¥ = 16
rst + reby + ri¥ = rgbs

where rn =M+ m; +m; (I; = distance to center of mass for pendulum i)
ry = mily +myl 1 =length of pendulum 1
r3 =maby
ra=J1+ mﬂf +m212
rs = Inzlzl

re = Ja+ mﬂ%
rr =myl1g +molg,
rg =mabg

These implicit differential equations can be solved explicitly for 61, 6,, and u:

h I n 56' /]
ry r4 15 01 | = | rbr
r3s Is Tg 3 rgha
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Solving for ¥, 61, 6, we get

i=anb +oapb + piu

61 = 02161 + anbs + Pou

6 = a3101 + 0320 + Pau
Letting the state variables be

X1=x, Xxp=0, x3=60

x4 =% x5=01, x=6
we write

[ % ] 0 0 01 0 07 [x F 07
J.Cz 0 0 0 010 X2 0
J.C3 0 0 0 0 01 X3 0
= + u
X4 0 an a2z 0 0 O] x4 B
X5 0 o axp 0 0 O x5 B
| X6 ] LO a3 a2 0 0 OJLlxel LB
The A, B matrices can be partitioned as follows.
0|1 0
A= - , B=|<
AlD B
which is similar in structure to the double side-by-side problem.

The controllability of the system is left as an exercise. The reader can also deter-
mine observability under a variety of sensor decisions (measuring x, 6, 6>, x and 6,
x and 65, 6, and 6,, x and 6y and 6,). It is important to appreciate the use of symbolic
math programs (such as Symbolic Math Toolbox of MATL.AB, Mathematica, Maple,
and Macsyma, to name a few) in the various IP problems because they create rather
large symbolic matrices that soon test the patience of humans.

8.8 SUMMARY

At least three distinct procedures exist for converting a system describable by an ath-
order linear differential equation into a system having n state variables: phase/dual
phase variables, canonical (diagonalized) variables, and physical (block diagram)
variables. The first of these translates a system transfer function into system matrices,
the second provides diagonalized system matrices, while the third preserves actual
system quantities (e.g., velocity, current, temperature).

The phase-variable form was shown to be especially convenient for single-and
multiple-output system transfer function synthesis, and the dual phase-variable form
is convenient for multiple-input system transfer functions. Simulation diagrams are
not only useful in transfer function synthesis, they also give a standard, systematic
and compact description of a system.
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The relationships between signals in a simulation diagram were shown to be a set
of coupled first-order differential state equations and linear algebraic output equations
relating the system outputs to the state variables. These state-variable equations are
compactly expressed using matrix notation:

x = Ax + Bu

y=Cx

System transfer functions were calculated systematically from the state-variable
equations by using matrix algebra:

T (s)=Cl[sI — AI"'B
It was seen that all transfer functions of a system share a common characteristic
polynomial,

[sI — Al

A nonsingular change of state variables gives anew representation for a system but
leaves the system’s input—output relations, its transfer functions, unchanged. Hence,
a system characterized by a set of transfer functions may be represented in countless
different ways, each differing in the choice of state variables.

A very special set of state variables for a system are those for which the state
equations, each of first order, are decoupled from one another. A system so represented
is said to be in normal or diagonal form:

M 0o 0 --- 0

0 5 0 .-~ O
A= |

0 0 O Sy

Determining the change of variables that places a system in diagonal form is the
characteristic value problem of matrix algebra. An alternative transformation method
involves expansion of a system transfer function into partial fractions. Systems with
repeated characteristic roots cannot be diagonalized: however, they may be placed in
a related Jordan form, where the repeated root terms involve a distinctive nonzero
“block” along the diagonal of the state coupling matrix.

A fundamental system property is stability. It can be studied from transfer func-
tion or state space points of view. A system with a given transfer function is BIBO
stable if for all bounded inputs, the outputs are bounded. The condition for BIBO
stability is that the poles be in the LHP. A system with a given state space realization
is asymptotically stable if the states approach O as time approaches infinity. The con-
dition for asymptotic stability is that the eigenvalues of the A matrix be in the LHP.
These two notions of stability are equivalent when the transfer function of the sys-
tem contains no common poles and zeros (i.e., there are no pole—zero cancellations).
Since most control systems are of the feedback type and are always subject to exter-
nal disturbances and noise, a more appropriate condition is that all transfer functions
between all inputs and outputs be stable. This is called internal stability, and it ensures
that all signals within the system remain bounded.
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PROBLEMS

1. Draw phase-variable form simulation diagrams for systems with the following
transfer functions. Then write the state-variable equations in matrix form.

—25+8
T(s) = ———
(@ T (s) 2138
10s
b)) T =
O T =Gt 12
Ans. #1 0 1 0][x 0
x| = 0 0 1 X2 |+|0|u
B -2 -7 -12]|x 1
_ x|
y=[o0 10 o] 2
| % |
753 — 252+ 5
T (s) =
© T() st 4353 4+09s2+s5+1
(d) Two outputs:
—s24+9
T ==
&)= 5 3 s14
s24+s5s+10
T (s) = —— o
21 () s3+3s2+5+4
Ans. J'Cl_ i 0 1 0 X1 0
Ji'z = 0 0 1 X2 + u
JC3_ _—4 -1 -3 X3 1
n| [9 0 -1 z‘
w| |10 1 1 2
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2. Draw dual phase-variable form simulation diagrams for systems with the
following transfer functions. Then write the state-variable equations in

matrix form.
—25s+8
@ T@e)= 218
2s + 8
b) T =
®) T6) =35 e +2
Ans. X1 —% 1
nl=|-%o0
X3 -2 0
y=[1 0 0]
—s3 +45* — 95 + 4
© T(s)=

st 483 4+2524 549
(d) Two inputs:

3s2+9
Tu(s)_s3+3s2+s+9
s—4
0= 5 3o sTs
Ans. X1 -3 1
Hnl=|1-10
X3 -9 0
y=I[1 0 0]

0 X1 0
1 p.%) + % u
0 X3 g
X1
X2
X3
0 [ x 3 0],
1 |x|+]0 1 [u‘]
0| x 9 —4 2
X1
X2
X3

3. Draw simulation diagrams to represent the following systems:

@ [ 1 8 —1][x
Ji'z - 2 X2
_X','g —2 1 X3

4
8

X1

y=[1 -4 0]| x;

X3

1
+ 10 |u
0
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®) g 0 4 0][x 1
.fz = —1 -1 4 Xy | + 8 |u
JE3 0 3 X3 -5
y=[0 -3 6]|:x2
(©

sl [ 2 1|[a], [t o8]
|| -8 o] x 2 4 1||™
us

@ 57 [ oo 1]x 4 0
Bl=l-1 2 4||x|+ 00["‘]
(5] [-8 1 0][x 1 7|L*
(vl [4 0 o [x
yw»2w|l=]10 10 X3
_yg_ 1 4 3 _JC3

4, Draw a simulation diagram to represent the following state equation.

# 1 3 0[xn 0 8
Hil=| 0 -4 8 x2+—30[”1]
3 0 0 —3||x o 1]|L"
X1
[9 2 0] x
x3

5. For the following systems, find the transfer function matrices:
@ [a]_[-2 1[=x],[ 2],
Bl | -8 0||x —4
»n|_ 1 -1 X1
y2 - 0 4 X2
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Ans. [ 165 —4 —29s + 3
| s2—85+3 s2—8s+3
© Tx71 [T o4 17[x 4 2],
BHl= 00 4a|lx|+]|0 1 [u‘}
Bl -2 8 —4][x]| [3 -8|L"
l:yl_ (1 0 0] i‘
= 2
n| o[04 8]

6. Find the characteristic equations of the following systems. Then determine
whether each is stable.

® ;j;]=[2§ Z’Mi]*[—g ;W;]
BRI

® s 0 -2 3]|Fx 2
=10 =3 1 ||{x|+]|-8]|u«
B 0 1 —8||x 4

X1
y=[4 1 6]| x
X3

Ans. 53 + 1152 + 255, marginally stable

© Tz -1 =2 20[=x 2 -1
Hl=1 2 o 6||[lx|+]o0 o[“‘]
is 1 2 —4||x 2 gL

X1
y=[4 0 —1]|x
x3

7. Although the following transfer functions do not share a common denominator
polynomial, they may be made to have a common denominator by multiply-
ing their numerators and denominators by appropriate factors. Find a simulation
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10.

diagram and a matrix state-variable diagram and a matrix state-variable repre-
sentation for a single-input, two-output system with the following two transfer
functions:

4s +1
)= e+
T (s) = 10s

+DE+4)
The best solutions will involve only three integrators.

. Use the partial fraction method to find diagonal state equations for single-input,

single-output systems with the following transfer functions:

—7s+4
T()= D02
@ Te) s24+8s+12
252 435 —7
b) T =
® TE= 6+ 6+9)
Ans. ;7 T2 o o][a] [
| = 0 -8 0 |+ 1]u
3 i 0 5[z 1
) [ 21 |
=l 7 2|
10
() T(s)=

53+ 8s2 4+ 15s

. The following transfer functions for single-input, single-output systems involve

complex characteristic roots. Find diagonal state equations for these systems.
Then find an alternative block-diagonal representation that does not involve
complex numbers.

T _ 4s
@ (s)_s2+2s+7
s2+35s—8
® IO = T e+3+nG+3-N
4
© T ()

TG +2) (P +25+17)

The following transfer functions for single-input, single-output systems involve
repeated characteristic roots. Find block diagonal Jordan canonical form state
equations for these systems.

3s—1
T =——"7—
@ T(s) st a
§3—4st+5-2
®) TE)="—"—""F""""7

+2)+3)°
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Ans. % 2 0 0 0[a 1
22 _ 0 -3 1 0 22 0
11 0 o0 =3 1||lz|T|o]*
4 0 0 0 3|z 1
21
y=[-28 68 16 29]| 2
Z3
24

7s3

©TO = erer

11. The following systems have real characteristic roots. Find alternative diagonal
state equations.

RN REA]
y=I[2 —3][2]
NHEESHERE
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@ ry1 =31 0™ 1
=12 0 1||x|+]|1]u
.723_ L 0 00 X3 1
|:y1-=-1 1 0} 2
y2 01 1

12. The following system has a set of complex conjugate characteristic roots. Find
an alternative diagonal set of state equations. Then find another alternative set
of state equations where the complex root terms are placed in real number block

diagonal form.
i 0 1 0][mx 2
X |=10 0 1 x|+ -1]u
X3 0 17 =2 |[x 0
xl_
y=I[11 1]| x
X3_

13. The following system has a repeated characteristics root. Find an alternative set
of state equations in Jordan form:

# [ 0 1 0][x 0
)'62 = 0 0 1 X2 +12 |u
)2:3 _-—9 —-15 -7 X3 3
11 0] 1
YZlo o1 1| ™
i 5

14. Find diagonal state equations for systems with the following transfer function

matrices:
—6s 4
T =
@ T6) [s2+4s+3 s2+4s+3]
s2—4 45 — 8 s?+3s—4
b) TE)=|3 2 3 2 3 2
s34+3524+2s sP4+35s2+2s s34+352425

Ans. One possibility is the following:

.)2'1 0 0 0 X1 -2 -4 =2 251
»|1=10 -1 0 X3 | + 3 12 6 Uy
.72‘3 0 0 -2 X3 0 -8 -3 Uus
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X1
y=I[1 1 11| x
X3
(©) 3s—1
s2+4
T =
®) —s+38
s2+4
@
s
—352 —4
T(s)=t—— <
) s3I +352 4+ 25

Ans. One possibility is the following:

—

—

1 0 0 of[x 1
X 0 -1 0 xp |+ |1 {u
_.7;.'3_ _0 0 -2 _)C3 1
—yl_ i 0 1 —1— X1

y2 -2 7 -8 X2

| ¥3 | | 4 -8 4_ X3

15. Find a simuiation diagram and a matrix state-variable representation for a two-
input, two-output system with the following transfer function matrix:

4s s—3
2 2
T (s) = $24+35+2 s4435+2
-6 s+4

s243s+2 243542

16. A transfer function with equal numerator and denominator polynomial degrees
may be expanded as a constant plus a proper remainder, as in the following
example:

I 35 +2s — 4 L T7s—10
S == —_—
s2+35+2 s2+35+2

It may be realized by adding to the system output a term that is proportional to
the system input. The resulting state-variable equations have the form

X =Ax+ Bu
y=Cx+ Du
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17.

18.

Find matrices A, B, C, and D for a system with the transfer function above.
For such a second-order single-input, single-output system, the state-variable

equations will be of the form
Jf'l _ e an | ¥, by u
X2 a axn || x by
y=1[c Cz][xl]+du
X2

Use controllability and observability matrices to determine whether the following
systems are completely controllable and whether these systems are completely
observable. In addition, determine BIBO and asymptotic stability in each case.

-l
e 2]

®) 21 T 30 =57[x 1 0
Hl=|l-21 5||xm|+]2 0["‘]
Bl L oo 2| 0 —1|L"
|:y1- (4 1 —3] 1
wl| |3 2 —1[|™
m L X3

Ans. completely controllable but not completely observable

© ol 1 o —=2][x 1 -1
Hl=]3 =3 ol|lw|+]|2 o ["‘]
B o o 1]jxm] |o ofLl®
{yl’ [0 4 1] 1
wl o =2 3|
1L X3

Write state equations for systems—each with modes e, e, e*/) and
e'=4=/¥__that have the following properties:

(a) The mode e? is uncontrollable.
(b) The mode e~ is unobservable.

(c) The mode e¥ is both uncontrollable and unobservable.
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19.

20.

21.

22.

23.

(d) The modes e"*+* and e~*~/* are uncontrollable.
(e) The mode e~ is uncontrollable and the mode e is unobservable.

The system
| -1 1i|lx n 0
ol 2 oflm|T1]"
y=I1 1]["‘]
X2

is unstable. Can the instability be detected from input—output measurements?
Determine whether the system is completely observable. Then calculate the sys-
tem transfer function. A common factor in the numerator and the denominator
should cancel.

Repeat if instead the output equation is

SRlH

Find a third-order system, if possible, in phase-variable form, that is not
completely controllable.

Show that an nth-order system with n outputs is completely observable if its
(n x n)-output coupling matrix is nonsingular.

Use the time domain method involving convolution to solve
X==2x+u)

with
x (0_) =17
u () =3e¥

Use Laplace transform methods to find the state response of the following sys-
tems for ¢ > 0 with the given inputs and initial conditions. Also find the
system output.

@ i =—3x+42r (@)
y=4x
x (0') =17

r (1) = Su(t), where u () is the unit step function
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®) [2]:[_3 (1)] [E]Jr[‘l)]u
KEIEH

u (t) = 8 (¢), the unit impulse function

Ans. 101" 2.99¢74%
4'61e1.54t _ 4.618_4'54t

O L 2R

} 3y (1) = 1.01e™¥ +2.99¢*%%

wu@® | | €
w@ | |5
@ 2] [-3 1 0][x 0
ni=]1-2 01 x2 |+ 1]u
J&3_ | 0 0 O X3 0
w|_[1 o 1]
| oo 1]||7?
. L X3
xl(O_)_ _1
xz(O‘) =10
x3(0‘) _0
u(@®)y=2

24. The state transition matrix for a certain system is

<I>(t)=|:%e_t+%_2t 2™ —e ™) ]

3¢" =3¢ ¥ —e 427
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Find the state x(z) for t > 0 if all system inputs are zero and

«0)-[283]- 7]

25. Calculate state transition matrices for systems with the following state coupling
matrices A, using

@)=L {[s1 — A]7'}
@ Mo
]
® 1 4
]

Ans. [ 0-48—7'1t+0.6€4'1t 0.36—7'“ —0.384'“ ]

0.6e7 7Y — 0.6e*Y 0.54¢771* 4 0.46e*1

© -5 10
-4 0 5
0 00
26. Show that the state transition matrix for a diagonalized system is diagonal, with
the system modes along the diagonal.

27. Find state-variable equations for each of the systems of Fig. P8.27. Then find
the transfer function(s) from the original drawing and compare with the transfer
function(s) of the state-variable model.

Ux(s)
2 + 10 _
Ui s+4 _’8)_' Z+3s+10[ 1> 1@
@
1
d 3
+5
1 1
U(s) O O ¥(s) U(s)
2 .8
5+3 -6 -2 -3 524549
&) (©)

Figure P8.27



CHAPTER

State Space

Design

9.1 Preview

Feedback along with many of its properties has been the underlying theme in control
engineering. In classical design, the plant output is fed back and processed by standard
compensators (lead-lag, PID) to modify system dynamics with a view to satisfying
stability and performance requirements. Typically, a design engineer tries to reshape
the system root locus, or Bode plot, to meet the requirements. These methods allow
limited control of the closed loop poles.

In state space design, the basic idea of feedback is maintained. Rather than
feeding back one or two outputs, we feedback the complete system state vector to
modify system dynamics. We will see that feeding back the complete state vector
gives the designer total control over the closed-loop poles. Such complete control
is possible because, ideally, the system’s state contains all the available information
about the system. In a sense, we are using full information about the system to
control its behavior.

9.2 State Feedback and Pole Placement

626

Consider the simple first-order system described by
x=x+u x(0)=x
y=x

where u is the input to the plant. The pole of this open loop system is 1, indicating
that the open-loop system is unstable. To stabilize the system, we may feed the state
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back using some gain k where
u=—kx

Therefore, the compensated system becomes
X=x—-kx=(01-kx

The closed-loop pole is 1 — k, which results in an asymptotically stable system for
k > 1. In fact, by a suitable choice of &, we can place the closed-loop pole anywhere
on the real axis.

As another example of placing the system poles at desired locations with
state feedback, consider the following single-input, single-output system, which is
described in phase-variable form:

J.Cl 0 1 0 X1 0
X | = 0 0 1 x| +10|u
.!".'3 -5 -7 =3 X3 1
X
y=[-2 4 31| x2
X3

This system is shown in the simulation diagram of Figure 9.1(a) and, from Mason’s
gain rule, we find that it has transfer function
3/s +4/5% + —=2/s°
T(@s) =
14+3/s+7/s2+5/s3
_ 352 + 45 -2
3432475 +5
Since the characteristic equation factors as follows:

S +32+Ts+5=(+1+2@E+1—jD+1)

its polesare ats = —1 — j2, —1 + j2, and —1.
With state feedback,

u(t) = —kixy — kaxz — kaxsz +r(z)

the state equations are of the form

)&1 0 1 0 X1 0
X | = 0 0 1 X2 [+]0|r @)
.72‘3 —-kl -5 —kz -7 —k3 -3 X3 1

X1

y=I[-2 4 3]| xn
X3
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O ¥Y(s)

U@s) 1
O

-5 k1~ 5)
(@) ®)

Figure 9.1 State feedback example. (a) Open-loop system. (b) System with state feedback.

as diagrammed in Figure 9.1(b). The feedback system has transfer function, in terms
of the feedback gain constants %,

3/s +4/s2 —2/s3
1+ B+ ks)/s + (T+kz)/s? + (5 + k1) /s*
B 352 45 —2
TS+ GB+k)st+ (T +Hk)s+ G+ k)

The coefficients of the characteristic equation may be chosen at will, by appropriately
selecting kq, k3, and kj. If, for instance, it is desired that the system poles be located
at s = —4, —4, and —5, the characteristic polynomial should be

(s +4)(s +4)(s +5) = s> + 1352 + 565 + 80
=3+ B+k)?+ (T +k)s+ 5+ k)

T(s) =

which will be the case for

ky=4+175
k =449
ks =410

In general, given a system in state space form
X = Ax + Bu

Using state feedback, we get
u=—-Kx—>x=Ax—BKx=(A—BK)x

The closed-loop system matrix has been modified from A to A — BK. The closed-
loop characteristic polynomial is given by

Ac(s) = |IsI — (A - BK)|

The closed-loop poles (or eigenvalues) are the roots of the foregoing polynomial. If
the original system is represented in phase-variable form, the A matrix will be in
companion form. An important property of companion form matrices is that their
characteristic polynomial can be written by inspection. In fact the coefficients of the
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characteristic polynomial can be read off the last row of the A matrix. For instance,
in the preceding example, the last row of the A — BK matrix is

Lastrow=[—ki —5 —ky—7 —k;—3]
and the characteristic polynomial is
Characteristic polynomial = s + (3 + k3)s® + (7 + ko)s + (5 + k1)

Itis clear from this equation that, in this case, any desired polynomial can be achieved
by selecting the feedback gains.

Can all systems be stabilized by using state feedback? To answer this question,
consider the following example.

j—10x+b1u
“lo 2 b,

Using state feedback, the closed-loop characteristic equation becomes

s 0 1 0 b1
BRIt ENCE

= 52+ (=34 baky + brky)s + (2 — boky — 2br1ky)

To see whether we can place the closed-loop poles anywhere in the complex plane,
consider an arbitrary second-order polynomial

A(s) =

Desired characteristic polynomial = A(s) = 5% + as + B
To find the state feedback gains, these polynomials must be identical. Thus
biki +bky —3 =«
—boky —2b1k1 +2=8

Writing the equations in matrix form, we get

[ b b |[k]_[ 3+«
| 26 b ||k | | -2+8

We can solve for the unknown gains for any right-hand side (i.e., for any desired
polynomial) if and only if the determinant of the coefficient matrix is nonzero.

by b
—-2b; —by
Hence, both b; and b, must be nonzero. But note that this is the same condition as
complete controllability of the system (refer to Section 8.6). We conclude that to place
the closed-loop poles of this system arbitrarily, the system must be controllable. Let
us see what happens if this condition is violated. Suppose b; is zero. In this case, the
equations will be consistent when

34a=2—8 o pf=-1—«

= —bi1by + 2b1b, = b1 b,
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Defining stabilizabilty.

Imposing this condition on the desired polynomial
Achievable desired polynomial = 2tas—1—a

But this polynomial is unstable. Hence, we can never stabilize this system if it is
uncontrollable.
The results of the previous example can be generalized as follows:

The closed-loop poles of a system can be arbitrarily placed anywhere in the
complex plane if and only if the system is completely controllable.

Controllability was defined earlier as the ability to move the system states from
any initial state to any final state. We observe here that this is equivalent to the ability of
placing (or shifting) the system poles anywhere in the complex plane. The foregoing
result is commonly called the pole placement (or pole-shifting) theorem. If a system
is not controllable, we may still be able to move some of the poles but not all of
them. In general, controllable modes can be shifted, whereas uncontrollable modes
are fixed. For instance, in the preceding example where by was 0, the mode at s = 1
was uncontrollable (could not be moved), but the mode at s = 2 could be placed
anywhere (we can show that to move the mode from 2 to —2,ky = 4/by).

9.2.1 Stabilizability

Careful study of the pole placement theorem reveals that controllability is too strong
a condition. It allows arbitrary pole placement, even in the RHP. But we normally
are not interested in placing system poles in the RHP. It turns out in practice that a
weaker notion than controllability is sufficient for most purposes. This notion is called
stabilizability. It refers to the ability to move only the unstable modes of the system.
Therefore, we say a system is stabilizable if the unstable modes are controllable or,
equivalently, if the uncontrollable modes are stable. The easiest way to check this is
to convert the system to modal form, then check each mode and the corresponding
row in the B matrix. The next example illustrates the notion.

[ < L

Neither of these systems is controllable. In the first system, the stable mode at —1
is not controllable, whereas the unstable mode at 2 is controllable. Hence, the system is
stabilizable. For instance, by using state feedback control—u = —kx;, with k > 2—
the system is stabilized. In the second system, observe that the unstable mode at 1
is not controllable; therefore, the system is not stabilizable. Note that either stability
or controllability implies that the system is stabilizable. For control system design,
stabilizability is the minimum condition the system must satisfy for any problem. A
system model that does not satisfy this condition is a poor model. Either the system
must be remodeled or its structure must be modified to render it stabilizable.

Several formulas exist for computation of the state-feedback gain. Ackermann’s
formula is an example of one (for SISO controllable systems). Given the desired
characteristic equation

Ag(s) =s"+ars" -+ o
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The state feedback gain vector is given by
k=1[0,0,..., 1M1 As(A)

where Ay(A) = A” + o1 A"' + .- + &, 1A + &, and M, is the controllability
matrix.

As an application of this formula, consider the following double-integrator
plant.

1
G(S) = S—2

or in state space form

SRR
y= [1 O]x

Let us place the system poles at —1 + j. That is, Ay(s) = 5% + 25 + 2. Then, k is
given by

-1 2
0 1 0 1 01 10
k=10 ”[1 o] [0 0] +2[0 0]”[0 1] =22

Let the plant input be
u=—kx+r

Then the compensated system block diagram will be as shown in Figure 9.2(a).
Rearranging the block diagram, as in Figure 9.2(b), shows that the state feedback
controller is equivalent to a feedback PD compensator of the form

H(s)=2(1+5)
The open-loop transfer function is given by

2(s +1)

G(s)H(s) = 2

This can be used to perform classical root locus and Bode analysis on the system.
We can also obtain stability margins for the system. The open-loop and closed-loop
transfer functions can also be obtained directly in terms of the state space matrices as
shown next.

The plant is represented by

X =Ax+ Bu
Laplace-transforming, we have

sX(s) =AX()+BU(s) X(s)=(sI—A)'BU(s)
Let ®(s) = (sI — A)™'; then X (s) = ®(s) BU(s), and

U@s) =—KX(s) = —KP(s)BU(s)

Ackermann’s formula.

State feedback control of the
double-integrator system.
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G(s)
pr—— e,
RG) + u(s) 7X@ 1] Xe) R+ U(s) T 1 X%0[ 7] %)
— - E - E > > E > E >
2 p—————
{2f— 21 + 5) [
H(s)
(@) (®)
Figure 9.2 (a) Compensated system block diagram. (b) Rearranged block diagram.
State feedback open-loop Figure 9.3(c) shows that if the plant input is u, the signal fed back to the summing junc-
transfer function. tion is —K ®B. Hence, the open-loop transfer function is K ®B. If this is compared

to a classical feedback configuration, shown in Figure 9.3(d), we get
G(s)H(s) = K®(s)B

The closed-loop transfer function of the state feedback system, shown in Figure 9.4,
is given by

u=—-Kx+r

Applying the input to the system (i.e., closing the loop), Laplace-transforming, and
solving for the state vector, we get

x=(A—BK)x+Br - X(s)=@GI—-—A+ BK)"'BR(s)
Closed-loop transfer function ~ Substituting the state into the output equation gives the closed-loop transfer function
under state feedback. 1
Y($)=CX(s)=C(sI — A+ BK)  BR(s)
Applying these to the present example, we get

-1
1 1
k®(5)B =[2 2][3 s] [ﬂ:zs;

-1
10 0 1 0 1
o s 3L 2 T

9.2.2 Choosing Pole Locations

State feedback gives the designer the option of relocating all system closed-loop poles.
This is in contrast with classical design, where the designer can only hope to achieve a
pair of complex conjugate poles that are dominant. Because all other poles and zeros
may fall anywhere, meeting the design specifications becomes a matter of trial and
error. With the freedom of choice rendered by state feedback comes the responsibility
of selecting these poles judiciously.

Although there is no magic choice, there are some guidelines we can follow.
Moving the poles around is costly. Suppose a first-order system has a pole at —1.
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(@

R(s)=0 X(s) R(s)=0
o n Y(s)

(c)

Figure 9.3 (a) Block diagram of a state feedback compensated system. (b) Simplified diagram
(c) Diagram for computing the open-loop transfer function with the loop broken at the input.
(d) Classical feedback configuration.

If this pole is moved to —10, the time constant is reduced, resulting in a faster system.
The system output may be voltage, pressure, position, velocity, temperature, and so
on. Sensors and an actuator are needed to do the job. A faster system may require a
more accurate sensor and a larger or stronger actuator (such as a motor) to perform the
task. These are some of the obvious costs that may be associated with pole shifting.
Therefore, one guideline is that if an LHP pole has an acceptable location, leave it
alone. Poles in the RHP, or poles on or close to the imaginary axis must be moved.
A rule, suggested by optimal control, is that RHP poles must be reflected about
the imaginary axis to minimize control energy (i.e., a pole at 2 must be shifted to
—2). A pair of complex conjugate poles can be placed to meet transient response
requirements. One should also be cautious about the temptation to push the poles too
far into the LHP. The consequence of this is that the system bandwidth increases, and
the system becomes sensitive to noise.

»=-¥(s)

d)

Guidelines from optimal
control.
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State feedback does not
affect plant zeros.

R(s)

> 1Cr »Y(s)

()]
RG) . X0 ] .
(©)

Figure 9.4 (a) State feedback compensated system. (b) The system after closing the feedback
loop. (c) Diagram for the closed-loop transfer function.

Suppose an unstable system has poles at {2, —10, —0.1 — j10, —0.1 + j10}. It
is specified that overshoot be less than 10%, and the settling time be less than 5.
The pole at 2 can be shifted to —2. The pole at —10 can remain. The complex poles
have a very small damping ratio. They could be moved to —1 — j and —1 + j
to meet the transient response specifications. Hence, the desired pole locations are
{=2,-10, -1 — j, —1 + j}. Figure 9.5 shows the resulting step response; clearly,
the specifications are satisfied.

Note that the closed-loop zero locations were not specified. The reason is that
state feedback does not affect the system zeros. Therefore, if they are at undesirable
locations, nothing can be done about them by using state feedback. Because steady
state tracking properties depend on poles and zeros, this means that tracking properties
cannot be helped by state feedback alone. For instance, the plant in the preceding
example was a double integrator, hence it is a type 2 system with zero steady state
error to unit step and ramp inputs. After state feedback, it became a type 0 system.
For example, we put

242541

T =1—-T(§)= ———M8—
£(s) (s) 225 42

and for a unit step input, Tg(0) = % = (.5; hence, the steady state error is 0.5.
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1 1 ! 1 !
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Time (s)

Figure 9.5 Step response of a fourth-order system with specified
poles.

9.2.3 Limitations of State Feedback

The major limitation of state feedback is that it is not usually practical. It is not
practical for two reasons. One is that state feedback leads to PD-type compensators,
which have infinite bandwidth, whereas real components and compensators always
have finite bandwidth. Another reason is that it is simply not possible or practical to
sense all the states and feed them back. In reality, only certain states or combinations
of them are measurable as outputs. Consequently, any practical compensator must rely
on system outputs and inputs only for compensation; that is called output feedback
and is discussed in the following sections.

O DRILL PROBLEMS

D9.1 For the state-feedback systems described by the following equations, choose
the feedback gain constants k; to place the closed-loop system poles at the indicated
locations:

(a)
.i'l 0 1 0 X1 0
x| = 0 o0 1 X2 [+]0 |u
)-'.'3 -3 -6 -7 X3 1
X1
u=[—k1 —ks —kg] X2 | +r
X3
X1
y=[2 0 -1]|x
X3

Closed-loop poles at s = —3, —4, and —5
Ans. ky =457,k = +41,ks = +5

State feedback is not usually
practical.
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(b)
% -2 1 0]|[m K¢
=] 4 0 1||x|{+!0]u
X3 0 0 0] x 1

x1
u=[—k1 —ky —k3] x| +F
X3

Closed-loop poles at s = —3 & j3, —3
Ans. ky =430, ky = 426, ks = +7

D9.2 Design a state-feedback controller for the following systems. Determine the
controller gains, open-loop transfer functions, and closed-loop transfer functions.
Use the open-loop transfer functions to obtain root locus, Bode plots, and gain and

phase margins.

(@
. |20 N 1
x—lox Ou
y=[1 -1l

u=—kx+r
Closed-loop poles at s = —1 & j

Figure D9.2a
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Ans. £k =[4 2], G(s)H(s) = (45 +2)/s(s — 2), gain margin = —6
dB, phase margin = 52°, T(s) = (s — 1)/(s® + 25 +2)

SE!

y=[0 1]x

(b

u=—kx+r

Closed-loop poles at s = —1 & j
Ans. k=[2 3], G(s)H(s) = (25 + 3)/(s* — 1), gain margin = —9.5
dB, phase margin = 53°, T(s) = 1/(s> + 25 + 2)

% .
1

Figure D9.2b

9.3 Tracking Problems

The state feedback compensator design discussed so far has been a regulator problem.
The command input has been ignored or set to zero. The objective has been to design
a system that is stable and rejects disturbances. The issue of steady state error was not
dealt with. In fact, if you check the step response of the double-integrator example,
you will discover some steady state error. This is true even though the original plantis a
type 2 system. The cpmpensator has changed the system type. How do we incorporate
the command input into the system, and design for a given steady state accuracy?

For a step input, this is easy. We simply add a summing junction with a gain,
such as

wu=—Kx+ Nr

where 7 is the reference (or command) input. The constant, N, can be computed to
ensure zero steady state error to step inputs. Let us derive this for the case of state
feedback.

%=Ax+Bu=Ax+ B(—Kx+ Nr) = (A — BK)x + BNr
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By definition of steady state, the states and output must reach a constant value—that is,
% =0  which implies that 0= (A — BK)xs + BNr

Solving for the steady state output
%3 = —(A — BK) 'BNr — y;; = —C(A — BK)"'BNr

This inverse exists because (A — BK) is a stable matrix. The steady state etror to
a constant input is the difference between the input and the output. It is therefore
given by

s =1 —Yss =r +C(A— BK) 'BNr =[1+C(A— BK) 'BN]r

For zero step tracking error, the steady state output must be equal to the command

input, therefore

- -1
N=———
C(A— BK)"'B

9.3.1 Integral Control

The preceding technique places a gain outside of the feedback loop. As you know,
when elements of a control system are not within a feedback loop, the overall system
will be quite sensitive to elements outside the loop. An alternate method that allows
us to achieve zero steady state error to step inputs is integral control. The idea is a
classical one; we place an integrator in the forward path in series with the system,
thereby increasing its system type. The block diagram of a state feedback controller
using integral control is shown in Figure 9.6

Because the integral term increases the order of the system by 1, we need to
augment the plant model with an added state variable to account for this. Define the
new state variable as

x,-=fedt=f(r—y)dt=/(r—Cx)dt

Therefore, x; = r — Cx, and the augmented plant equation becomes

HEEHHEHRH]

X(s) Y(s)
kgl

Figure 9.6 Block diagram of a state feedback compensated system with integral control.



TRACKING PROBLEMS

639

where the zero matrices have compatible dimensions. The controller is modified to

u=—Kx—Kixi = —[K K,-]|:;_]

Using this controller, the compensated system becomes

() L1

The characteristic polynomial of the compensated system is then equated with the
desired one to solve for the controller gains.

Let us design a state feedback controller for the double-integrator system
incorporating integral control action. First we need to augment the plant

. 0 1§0 0
H =|o _oio H + |1 fu
o Z1 oo L* 0
y=1I 050][-’-‘-}
e

The poles of the system will be shifted to {—1 + j, —5}. Note that an extra pole needs
to be selected because of the extra state. Solving for X, we get

K=[12 7 -10]

The steady state output due to unit step input is

o 1107 ' To
yss=‘C(A'BK)—IB=‘[1 0 50] 12 =7 1101 | 0)=1
-1 010 1

d DRILL PROBLEMS
D9.3 For the plants described in Drill Problem D9.2, use state feedback to design
an integral controller. The desired pole locations are as indicated.

(a) Closed-loop polesats = —1 &+ j, -5
Ams. k=[9 22],K;=10

(b) Closed-loop polesats = —1=+ j, —5
Ans. k=[7 13],K;=-10
D9.4 For the plant described by G(s) = 1/(s — 1), use state feedback to design
an integral controller that will place closed-loop poles at s = —1 =+ j. Also, draw
a block diagram or signal flow graph of the system.
Ans. k=3,K; =2

Double-integrator example
with integral control.
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9.4 Observer Design

An observer estimates the
states.

To fully implement the advantages of state feedback, all states should be fed back.
Typically, some of the states are measured by sensors and the rest must be estimated by
another device. An observer, shown in Figure 9.7, is a device that uses the inputs and
outputs of a system to produce estimates of its states. Observers either are built using
electronic components (hardware) or are equivalent computer (or microprocessor)
programs (software) in digital control implementations. The word “device” implies
either implementation. The idea of an observer is that if we have all system parameters,
we can always simulate the model on an analog or digital computer. Even though we do
not have access to system states, we have full access to the states of our simulation.
Therefore, an observer is a device which simulates the original system. Letting X
denote the state estimates in Figure 9.8, we have

X =Ax+Bu x(0)=ux
y =Cx

The observer dynamics are
F=AR+Bu+L(y—Ci £(0) =7%

The observer design proceeds by defining the error between the states and their
estimates. Let

i=x—-1x

To see how the error evolves with time, a differential equation for the error must be
obtained.

¥=%—-%=Ax+Bu— A% — Bu—L(y — C%) = (A — LO)¥

x(0) = X

T 1
_J | s | Mx;,;mtlred Y 2
tates outputs
Plant l-»{ Sensors l—l-»@l.__»
Inputs : x :
- _ _

Figure 9.7 Block diagram of system and its observer.
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The observer error will go to zero asymptotically if and only if the matrix (A — LC)
is a stable matrix (i.e., its eigenvalues are in the LHP) . But this matrix contains the
matrix L, which is to be determined. It turns out that if the system is completely
observable, L can be chosen such that the eigenvalues of (A — LC) are arbitrary. The
L matrix, which is a column vector for single-output systems, is called the observer
gain. Also note that the observer equation can be written as

f=(A—LC)i+Bu+Ly £0) =%

It can be seen that the eigenvalues of (A — LC) are the observer poles. Hence,
controllability allows arbitrary plant pole placement, whereas observability allows
arbitrary observer pole placement.

Recall from Chapter 8 that there was a duality between phase-variable and dual
phase-variable forms, in that one form could be converted into the other form via
an algorithm. There is a similar duality between the notions of controllability and
observability. For instance, if we transpose the controllability matrix M, (rank remains
the same), and replace A’ with A and B’ with C, we get M. Because stabilizability
is a weaker version of controllability, we can also define its dual. The dual notion of
stabilizability is called detectability . We say a system is detectable if the unstable
modes are observable, or equivalently, the unobservable modes are stable.

Consider the following example.

PO N R Y R A A Y
“lo -1 0 =lo 1|1*7|o
y=[1 0l w=[1 Oz

In the first system, the mode at —1 is unobservable but detectable. In the second
system, the mode at 1 is unobservable and undetectable. Let us design an observer
for the double-integrator plant G(s) = 1/s%.

o L

y=[1 0lx

Figure 9.8 Block diagram of system with observer.

The observer works if the
system is observable.

Detectability.

An observer for the
double-integrator system.
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\
25(0) =2

Figure 9.9 Structure of the observer for the double-integrator plant. Plant initial conditions
are (1, 2), observer initial conditions are (—1, —2).

You can verify that the system is observable. We will design an observer with poles
at {—2 =+ j2}. This choice is arbitrary, and more will be said about it later. The
design starts with setting the observer characteristic polynomial equal to our desired
polynomial, and solving for L.

1 0 0 1 L
sl:o 1]_|:O 0:|+|:lzj|[l 0]

=s*+hs+1,

Is] — (A — LC)| =

4
52+113+12=S2+4S+8—>ll =4,1, =28, ie., L = l:s:l

The observer equations are (with the input u set to zero).
B =% +4Q —1x1)
Xy =8(y — &1)

The structure of this observer is shown in Figure 9.9.

This observer was simulated to verify its convergence. The zero-input response
plots are shown in Figure 9.10. The plant initial conditions are (1, 2) and the observer
initial conditions are (—1, —2). Because there are no inputs, the second state stays at
a constant value of 2 and the first state is a ramp starting at 1. The observer estimates
have an initial error, but they converge to true state values in about 2 s. The convergence
time is the settling time of the observer, which is controlled by the real part of its
poles. Because the real parts of observer poles are —2, the observer is expected to
converge in about 4 time constants (i.e., 2 s).

0 DRILL PROBLEM

D9.5 For each of the following systems, x; is measured while x, must be estimated

by an observer. Select the observer gain L so both eigenvalues are as required.
Write the observer equations and create a block diagram or signal flow graph for

the interconnected system and observer. Also use computer software to simulate

the system and the observer, verifying the convergence of the observer.
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O = N W A L

-1 i L ! !

| { 1 1 | 1

0 03 06 09 12 15 18 21 24 27
Time

Figure 9.10 Simulation of the double-integrator plant and its observer.
(a) Plot of the first state and its estimate. (b) Plot of the second state and

its estimate.
-2 -4 2
= B= =
A |: 1 _4] [0] C=[1 0]

(a)
Observer eigenvalues should be {—50, —50}
Ans.

1= 94
—528
A;‘Tl =—2x1 — 4% +2u+ 94(x; — x1)

_éz =£1 —_ 4x2 — 528(.761 - .f])

—4 -4 0
A:I: X _2] B=[2] c=[1 0]

Observer eigenvalues should be {—10, —10}.
Ans.

o=

(®
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Closed-loop system.

e

1 = —4%) — 4%y + 14(x; — X1)

R =R — 2% +2u — 15(x; — £1)

[ ][] et

Observer eigenvalues should be {—20, —20}.

Ans.
37
L= [279]

£ =R +37(x — %)

©

%2 = — 10%; — 3%, + 10u + 279(x; — %1)

9.4.1 Control Using Observers

It was pointed out earlier that state feedback requires that all states be available for
feedback. What happens when state estimates obtained using observers replace the
actual states? Will we still be able to stabilize the system, or even to place its poles
arbitrarily? The answer is yes. To see this, we need to obtain the equations of the
closed-loop system, and examine its eigenvalues.

If the system is of order n, the observer will also be of the same order. When the
observer estimates are fed back into the system, the order of the closed-loop system
will be 2n. The states of the composite system are the original plant states, x, and
their estimates, . The composite state equations are obtained as follows.

x=Ax+ Bu x(0)=xg
y=Cx
Estimated state feedback:
u=—-Kx
Observer:
i=A% +Bu+L(y—C%), #0) =%

Closing the loop (i.e., feeding the control back into the system and the observer),
we get

x = Ax — BKx
i=(A—LO)% —BKi+Ly=(A—LC — BK)i +LCx

Combining these two equations gives the closed-loop composite system

HE
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The system will be closed-loop stable if the eigenvalues of this block matrix are in
the LHP. Although, this is not obvious from the matrix, we will soon show that it is
indeed the case. For now, let us return to our example and see whether the double-
integrator system is stabilized when the observer-based control is used. We recall that
the control and observer gains were

4
k=[2 2] L=|:8:|

The closed-loop system becomes

01 0 0 1
|l _[o0 —2 —2ffx x| |15
£l |40 -4 1]||z £0) | | -1

8 0 —10 -2 -2

The eigenvalues of this matrix are {—1 % j, —2 £ j2}. These are the plant and
observer pole locations selected earlier. The zero-input response of the system due to
the specified initial conditions is shown in Figure 9.11.

The system is clearly asymptotically stable. Therefore, the system has been
stabilized by using state estimates instead of actual states. Figure 9.12, compares the

2.5
2
15

-15f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time

Figure 9.11 States and their estimates of the observer-based compensated
double-integrator system. (a) First state and its estimate. (b) Second state
and its estimate.
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2.1
1.8
15
12
9
61 s

3 State feedback

/Observer based

2 Observer based

1.5 /
1L State feedback
S /

-2 1 1 ] 1 1 ! I 1 I
0 5 1 L5 2 2.5 3 35 4 4.5 5

Time

Figure 9.12 Comparison of state feedback and observer-based compensated
systems. (a) First state. (b) Second state.

two designs: the zero-input responses of the system using full state feedback and
using observer-based control. The figure indicates some performance degradation
due to estimated states. The observer-based response has a longer settling time and a
larger overshoot.

9.4.2 Separation Property

We want to show that the observer-based control results in a stable system. Recall
from Section 8.3 that state space transformations allow us to look at the system in a
different, and possibly more informative, way. Let us introduce the following state
transformation.

)f —p|? where P = L 0

X w I, -1,
It turns out that the P matrix is its own inverse; hence the new states are
-Z i _ In on x| X _ X
(w] " | L —L |[E] | x—x| | %

This transformation allows us to look at the states and observer errors. Recall
that under state transformation, the “A” matrix becomes “P~! A P”. Therefore the
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transformed system becomes

e

Note that, in this new realization, the matrix is block triangular (a block matrix
is a matrix whose elements are matrices, as in our case). Now, we use a fact from
matrix algebra.

FACT: Eigenvalues of a block triangular matrix are equal to the eigenvalues
of the matrices along the diagonal blocks.

Using this fact, and the knowledge that system eigenvalues remain invariant
under state transformations, we conclude that the closed-loop poles (or eigenvalues)
of an observer-based control system are the union of the observer poles, and the
poles of the system selected under state feedback (also known as controller poles).
Because controllability allows us to place the eigenvalues of A — BKX arbitrarily, and
observability does the same for the eigenvalues of A — LC, we see that under these
two conditions we have complete freedom in controller and observer pole selections.
Moreover, these selections can be made independently of each other because of the
block-triangular structure of the closed-loop system matrix. This property is known
as the separation property.

The separation between the control and the observer problem implies that we
can find the controller gain, assuming the states are available, design an observer to
estimate the states, and then use the estimates in place of the actual states.

9.4.3 Observer Transfer Function

It is instructive to obtain the transfer function of the observer-based compensator and
compare it with classical designs. For instance, we note that state feedback resulted
in a feedback PD-type compensator. The compensator output is the plant input #,
and the compensator input is the plant output y. The observer also has a feedback
from u, but this can be eliminated by substituting « into the observer equation. The
derivation follows.
i=—Kx%
i=A%+Bu+L(y—C#) =A% — BKi+Ly— LC#
=(A—BK - LC)x+ Ly

Taking the Laplace transform of this equation and solving it for X (s), we get
X(s)=(sI — A+ BK +LC)"'LY(s)

Substituting this into the control equation gives the transfer function
U(s) =~K(sI ~ A+ BK +LC)'LY(s)
U(s) =—H(s)Y(s) > H(s) =K(sI —A+BK +LC)"'L

Closed-loop poles =
controller poles plus observer
poles.
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Transfer function for
observer-based compensator.

Stable but no guaranteed
stability margins.

No control over
compensation poles and
Zeros.

The observer-based compensator for the double-integrator system is

The open-loop transfer function is given by

24s + 16
s2(s2 + 65 + 18)

The root locus and Bode plots are shown in Figures 9.13 and 9.14.

From the Bode plots, we read the gain and phase margins. They are approx-
imately 10 dB and 36°, respectively. Observe that the gain margin is fairly small
(i.e., raising the gain by a factor of about 3.16 would be destabilizing). One limi-
tation of observer-based design is that we have no direct control over the stability
margins. Thus designs that are perfect on paper might not work in a real situations.
This is because we usually have imperfect models of our systems, and stability mar-
gins provide some protection against model uncertainties. System designed with
low margins are inherently sensitive to model errors and may become unstable in
actual operation.

Observing the resulting compensator, we note that it has a pair of complex con-
jugate poles and one zero, so it has no classical counterpart. In fact, the compensator
poles and zeros could end up anywhere in the complex plane, including the RHP, and
we have no control over this issue.

In the preceding example, the observer initial conditions were chosen rather
arbitrarily. How do we choose them in general? The best choice is to use the plant
initial conditions. This we do not have, however. If we did, given the plant model,
we could have numerically solved for the states. From the convergence point of

G(s)H(s) =

40
20
0 < GM
-20 S
-40 <

10

dB

o Observer
poles

-60
-80 i .
-100
Controller 0.1 1 10 100

poles

-140 =

Imaginary
o
A

e
~160 BESHEI N
-180 N
-200
—220
—-240 I
-260

Phase

-7 ~6 =5 —4

1 1 | 1
-280
-3-2-10 1 2 0.1 1 10 100

Real w—

Figure 9.13 Root locus of the observer-based Figure 9.14 Bode plots of an observer-based compensated
compensated double-integrator system. double-integrator system.
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view, this is not an issue because the matrix (A — LC) is a stable matrix, and
the observer errors will go to zero independently of the initial conditions. Tt can
be shown that because the initial output is known, an optimal choice (in a mathe-
matical sense, not necessarily optimal in a physical sense) for observer initial
conditions is

£(0) = C'(CCHy(0)

What about the location of observer poles? There are several guidelines avail-
able. One guideline is to choose the observer poles that are faster than the controller
poles. This choice ensures that the observer converges faster than the system, so the
controller will be using more accurate estimates, thereby reducing the degradation
caused by the observer. Again, one must caution against pushing the observer poles
too far into the LHP, because this increases the system bandwidth and makes it more
susceptible to noise. An alternate guidelines suggested by results from robust control
is to choose the observer poles at the plant zeros (if the system has RHP zeros, use
their LHP images).

U DRILL PROBLEMS

D9.6 For the system of Drill Problem D9.1, choose control gain & to place the
closed-loop system poles at the indicated locations. In addition, design observers
with the indicated poles. Use MATLAB to verify that the closed-loop system is
stable using estimated states.

(a) Controller poles at {—6, —1 & j}
observer poles at [—5 =+ j5, —ﬁ]

2.336
Ans. k=[9 8 1] L= 23037
0.2579

(b) Controller poles at {—3, —1 + j}
observer poles at {—3, —5 &£ j5}
—2.7619 5.1429

Aps. k=[6 6 3], L= 1.1905 1.7143
—9.6667 14.0000

D9.7 For the systems of Drill Problem D9.2, design observers with indicated poles.
Using the same control gains simulate the closed-loop systems to verify stability.
Obtain compensator transfer functions, and root locus and Bode plots. Use these
to determine stability margins.

(a) observer poles = {—1, —2}

Choosing observer initial
conditions.

Choosing observer poles.
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(b) observer poles = {—1, —2}

Ans. L=[3:|,H(s)=slsﬁl

9.5 Reduced-Order Observer Design

There is no need to estimate
states that are directly
measured.

The observer introduced in Section 9.4 has the same order as the system and is
referred to as the identity or full-order observer. If the system has n states and m
measurements are available, itis possible to build an observer that estimates the states
that are not measured, hence reducing the order of the observer. It seems reasonable
that an observer of order (n — m) should be sufficient. This was first introduced
by D. Luenberger and is referred to as reduced-order (or Luenberger) observer. The
reduction in order leads to simpler and more economical compensators. If the number
of measurements m is large, the benefits could be substantial.

Before we drive this observer, we make an assumption on the structure of the
measurement matrix C. We will assume that C has the form

C=[1 0]

where I =m xmand 0 =m X (n — m)
The consequence of this is that it allows us to divide the states into two categories:
measured, unmeasured. That is,

y=1[1I m[?}=mn

We can then partition the system accordingly as
Xm Al A Xm B
. | = + u
Xu An Az || X B,
y=1II m[”]
Xu

The unmeasured portion of the system is
%y = Apxy, + (Anxm + Bau)

The terms within the parentheses are known quantities, so they are collected together.
Because there are m measured states, the number of unmeasured states is n — m,
so we will build an observer of order n — m to estimate these states. The observer
structure is given by the following procedure (this is the same procedure used for the
full-order observer): copy the system equation, replace unknown quantities by their
estimates, and add a correction term multiplied by the observer gain. The correction
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term is the difference between the plant output and the observer output.
J;c,, = Anx, + (As1x, + Byu) + L(correction term)

The correction term in the full-order observer case was (y — CX). In the present
case, it is

y—1 0] [’f’"] =y tm=0
Xy
Therefore, using the output will not provide any correction. However, we note that
if the outputs are available, we can assume that their derivatives are also available.
Now, observe that the derivative of the plant output is equal to the measured portion
of the system, that is,

Y =dm = Apaxy + (A11Xm + Biu) > y — Auixp, — Biu = Appx,

where we have collected the known, or measured, quantities on the left-hand side.
We can use the known quantities on the left as a substitute for plant output (we are
basically using all the information available from the system), and the right-hand side
as the observer output. Substituting this in the observer equation, we get

£, = Ay 4 (A2ixm + Bowt) + L(3 — A11%m — Biu — A

To verify that this scheme works, we need to show that the error dies out. Define the
error as

Xy =X, — X,

and derive a differential equation for the error.
%u=(An— LAp) %,

This is similar to the full-order observer error equation
i=(A-LOZ

Recall that if the pair (C, A) is observable (i.e., the system is observable), L can be
chosen to place observer poles anywhere in the complex plane. Comparing the two
error equations, by analogy we conclude that the same would be true for the reduced-
order case under the condition that the pair of matrices (A2, A2) are observable.
Luenberger showed that this condition is equivalent to the observability of the original
system—that is, (C, A).

We are almost done. The last step is to eliminate the output derivative in the
observer. Differentiation is to be avoided in system design because it is a noise-
enhancing operation. Looking at the observer equation suggests that a simple change
of variable will eliminate the derivative term. This change of variable is given by

z=x,—Ly or Xx,=z+Ly
A bit of algebra results in the final form of the reduced-order observer

z=Dz+ Fy+ Gu
X, =z—Ly

Reduced-order observer error.

Full-order observer error.

Final form of the
reduced-order observer.
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Designing a reduced-order
observer for the
double-integrator system.

First-order observer to
estimate xj.

o+

o

Figure 9.15 Block diagram of the reduced-order observer.

where
D =A»n—LAp
F=DL + A21 - LA“
G =B8B,— LB,

The block diagram of the observer is shown in Figure 9.15.

Let us design a reduced-order observer for the double-integrator system. Because
there are two states and one measurement, we require a first-order observer. The plant
equations are repeated:

. |01 +0
X—Oox lu
y=I[1 0lx

Although, we can simply plug into the formulas, we will repeat the observer deriva-
tion for this simple example from scratch. The unmeasured portion of the system is
given by

Xp=u—> Ay =A4»=0, Bb=1

The measured portion of the system, to be used for the correction term, is given by
X] =y =2x3 = (y —X2) (correction term)

Now, we copy the unmeasured portion, and add the correction term to get the observer.
fr=u+LG—%)

The observer error equation becomes
fa=h—tr=u—u—LG—%)=-Liz— %) =-Li

Choosing the observer pole at —2 yields L = 2. To eliminate the derivative term, let
z=X—Ly=13i—2y

The final form of the observer becomes

z=—-2z—4y+u
X2=2z+4+2y

Figure 9.16 is a diagram of this reduced-order observer.
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Figure 9.16 Block diagram of the reduced-order observer for the double-integrator example.

Note that in this example, the system was second-order, and we had one measure-
ment. Solving for L involved solving a first-order algebraic equation, so we obtained
a unique solution. In general, when there are n states and m measurements, there are
(m — 1) degrees of freedom in solving for L, and the solution is not unique.

U DRILL PROBLEM

D9.8 For the systems of Drill Problem D9.5, design a reduced-order, first-order
observer to estimate only x;. Select the observer eigenvalue as indicated. Write
the observer equation and use computer software to verify its operation.

(a) The observer eigenvalue should be —50.
Ans. D=-50,F =553,G=23,L=-11.5
z = —50z + 23u + 553y
X =z~ 115y
(b) The observer eigenvalue should be —10.
Ans. D=-10,F=13,G=2,L = -2
[2: —10z + 2u + 13y

B=2z-2y

9.5.1 Separation Property

The separation property also holds in the reduced-order case. It can be derived by
combining the closed-loop system and error system equations

| [A-Bk BK, x
2 0 Ax — LAp || %,

Therefore, the closed-loop eigenvalues are the union of the controller and observer
eigenvalues. In the above, the control gain vector has been partitioned as

u=—[K K] l:{m:l = —Kix, — K2R,

Xy



654

STATE SPACE DESIGN

First-order compensator for

the double-integrator system.

The case when C is not of
the form [I 0]

9.5.2 Reduced-Order Observer Transfer Function

The compensator transfer function is derived by substituting for  in the observer
equation

H(s) = K2 [s] — (D — GK2)”' (F — GK, — GK3L) + (K1 + K3L)

The same techniques used for the full-order case can be used to handle tracking
problems and integral control.

A first-order compensator will be obtained for the double-integrator problem.
The control gain, observer gain, and observer parameters, obtained earlier, are as
follows:

k=[ki k]=[2 2],L=2,D=-2, F=—-4,G=1
By using the preceding parameters, we get the compensator transfer function

6s +4
s+4

The compensator is recognized as a classical lead compensator. Root locus and Bode
plots of the compensated system are shown in Figures 9.17 and 9.18, respectively.

The compensated system has 45° phase margin and infinite gain margin.
Comparing this with the full-order observer-based compensator, we note that the
reduced-order case has resulted in a simpler (first-order) compensator with better
stability margins. The zero-input response of the compensated system is shown
in Figure 9.19. The zero-input responses of all three designs (i.e., state feed-
back, observer-based, and reduced-order observer-based compensators) are shown
in Figure 9.20 for comparison.

At the beginning of Section 9.5 we assumed that the C matrix is of the form

C=[I 0]

H(s) =

This is not a restrictive assumption, because through a linear transformation, we can
always convert C to this form. The transformation is given as follows. Choose any

2.5 Figure 9.17 Root locus of the
2 reduced-order, observer-based,
15 compensated double-integrator

1 Controller system.
poles
05
0 k - I}

-1} Observer
pole

Imaginary
S
i
T
L
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Figure 9.18 Bode plots of the reduced-order, observer-based, compensated double-
integrator system.

2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0
-0.3

0 0.5 1 1.5 2 2.5 3 35 4 4.5 5

0 0.5 1 1.5 2 25 3 35 4 4.5 5

Time

Figure 9.19 Using a reduced-order observer to obtain zero-input response
of the double-integrator system.

arbitrary matrix, T, such that when it is stacked on top of C, the result is a nonsingular
matrix—that is,

P = [g:l is nonsingular

The inverse of this matrix, called Q, is our sought-after transformation. This is because
P and Q are inverses of each other, and therefore satisfy

- c [co:r ce,] [r1 o
PQ—I*[T][Ql Q2]—|:TQ1 TQ:]_I:O I]
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Figure 9.20 Comparison of the zero-input responses of the double-integrator system under
state feedback, full-order observer, and reduced-order observer.

where the identity and zero matrices have compatible dimensions. Recall from
Chapter 8 that under a linear transformation, the new C matrix becomes

C=CQ=Cl[Q1 Ql=ICQ1 CQl=[ 0]

As an example, consider the following equivalent model for the double-integrator
system (obtained by labeling the states from left to right):

X = Lo x4+ 0 u
|0 0 1
y=1[0 I]x
Choosing T as shown below results in

B _lo 1 o |o1 o
T=[1 0]—>P_|:1 0]—>Q._P _[1 0:|—>C_CQ_[1 0]

A and B will turn out to be the same matrices as in the original example (this is just a
coincidence in this simple example, usually the new matrices will be quite different,
but the C matrix will have the required form).

Q DRILL PROBLEM
D9.9 Consider the third-order system given by
3
s(s2+4s +5)
or, in state-space form,
0 1 0 0
x=10 0 1|1x+1{0 |u
0 -5 —4 3

G(s) =
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Suppose the states x; and x, are measured but the state x3 is to be reconstructed
using a first-order observer.

(a) Find the observer gain and parameters. The observer pole is to be at —20.
Also write down the observer equation.

(b) Find the controller gain to place poles at —10 and —2 £ j2.

(c) Find the transfer function of the compensator (note that the compensator is
a two-input, one-output system).

Ans. (a) D=-20,G=3, L=[0 16], F=[0 -325]

z=-20z4+[0 — 325][?] + 3u = —20z — 325x; + 3u
2

PBy=z+[0 16]["1] —z+16x;
X3 [.?
(b) k=180 43 10]%
3 /\\
(© H(s) = —— [~26.665 — 533.33, (Q;Os + 2660] )
s+ 30 3

——

9.6 A Magnetic Levitation System

Beginning in 1969, West Germany sought to develop a high-speed electric train
system to span central Europe. State space analysis and aircraft technology were
used to design, build, and test such a train for operation at speeds as high as 400
km/h (248 mi/h).The train is suspended in midair by magnetic fields. This type of
suspension is called magnetic levitation or MAGLEV.

Figure 9.21, shows the cross section of a MAGLEV vehicle. The track is
a T-shaped concrete guideway. Once under way, the train does not touch the
guideway, resulting in greatly reduced friction and reduced guideway construction
costs. Electromagnets are distributed along the guideway and along the length of
the train in matched pairs. The magnetic attraction of the vertically paired mag-
nets balances the force of gravity and levitates the vehicle above the guideway.
The horizontally paired magnets stabilize the vehicle against sideways forces. For-
ward propulsion is produced by linear induction motor action between train and
guideway. Only the vertical motion and control of the suspended vehicle will be
considered here.
The equations characterizing the train’s vertical motion are now developed. It is
desired to control the gap distance 4 within a close tolerance in normal operation of
the train. The gap distance d between the track and the train magnets is

d=z—h
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magnetizing circuits

Figure 9.21 Cross section of a MAGLEYV train.

Then
d=z—h
d=%—h

where the dots denote time derivatives. The magnet produces a force that is depen-
dent upon residual magnetism and upon the current passing through the magnetizing
circuit. For small changes in the magnetizing current i and the gap distance d, that
force is approximately

fi=—Gi+Hd

where G and H are positive constants. That force acts to accelerate the mass M of the
train in a vertical direction, so

f1=M£=—Gl+Hd

For increased current, the distance z diminishes, reducing d as the vehicle is attracted
to the guideway.

A network model for the magnetizing circuit is given in Figure 9.22. This circuit
represents a generator driving a coil wrapped around the magnet on the vehicle. The
voltage induced in the coil by the vehicle motion is represented by the term (L H/ G)d,
for which it is assumed that the magnetic flux loss is negligible. For that circuit

rRi+Li—- 224
14 I———a=%v
G

The three state variables
X1 = d
X2 = d

X3=i
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i(?) Figure 9.22 Magnetizing circuit model.
—_—

w1 % d

0 1 0
X H 5 G X 0 0 ’
B|=|M M x2+(1)—1|:f:|
.723 H R X3 e 0

0 &= -7 L

G L
where

f=h

If the gap distance d is considered to be the system output, then the state variable
output equation is

d=.X1

The voltage v is considered to be a control input, while guideway irregularities f = A
constitute a disturbance. Figure 9.23 shows block diagram and signal flow graph
representations of the state equations.

The characteristic equation for the system, the roots of which are the transfer
function poles, is given by

s -1 0
H G
IsT—Al=| "y § Ml=0

H R

0 _E S+Z
} G H G
=s| g Mp|+| M Mg
—6 S+Z 0 S+Z
=s(s2+£s+£)—£(s+£)
L M M L

s R, HR
=5 +zS —m=0

The system is thus unstable, since its characteristic polynomial has coefficients with
differing algebraic signs. Also, the coefficient of s in the characteristic equation is
zero. The system instability is quite understandable when one considers the action



660

STATE SPACE DESIGN

F(s)

V(s) + X3(s) P X5(s)
—_ pa—

Xy(s)

10

Ca|—

W —
Rio

(s)

I

ol

Xk

Qb

(&)

Figure 9.23 Diagrams of the state equations. (a) Block diagram. (b) Signal flow graph.

of the magnets. If the gap distance d should increase slightly, the magnetic attraction
will decrease, tending to further increase the gap, and so on.

To control the system, the magnetizing circuit voltage is chosen to be a linear
combination of the state signals plus a tracking input u (¢):

v =kixi + koxo + kaxs + u1(2)

The feedback signals are produced from sensors that monitor the state variables,
namely, gap distance d, gap velocity d, and magnetizing current i. The resulting
feedback system is described by

X 13 : 0G X1 0 0
al-le oo R e ]
X3 E £+]2 _5 @. X3 Z 0

L G L
d=x1

Appropriate choice of the feedback gain constants k1, k;, and ks, thatis, the feedback
gain matrix,

K=[k k ksl
will place the system poles at any desired locations.

To proceed with state-variable design methods, the parameters M, G, L, and R
must be estimated. The following values do not necessarily represent those of any
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specific existing system, but the methods and values are representative of the design
process in general.

Suppose an engineer finds that each train car weighs 8000 kg. Each car is
supported by four magnets, each of which must therefore support 2000 kg. Each
subsystem can be analyzed using M = 2000 kg.

A static test is performed without control. The air gap is clamped shut, causing
d to be zero. A —120 V source is applied to the magnetizing circuit. With a time
constant of % s, —8 A eventually flows at steady state. A resultant force of 4000 N is
measured (in addition to that of gravity).

The static testis concluded and the voltage is carefully varied until, at equilibrium,
the car levitates with d = 10 mm under the influence of 8 A of current.

If the magnetizing circuit is at steady state, the static test can be used to get R
and L, since

R= 2 = —120 =150
i -8
and, from the time constant during the static test
L 15
T=— L=RT=_—=05H
R ¥ 30

The data from when the air gap was clamped shut (d = 0) permit G to be computed:
f=—Gi+Hx0

G=T=__—8=500N/A
The data from when the car was levitated to equilibrium provides H:
0=-500x8+H x 10
H = 400 N/mm
The parameter values are, therefore,
M =2000 H =400

G =500 L=05

R=15
For these, the feedback system equations are
X 1 0 1 0 X1 0 0 i
BHl=[02 o0 —0.25 n|+[0 -1 { f‘ ]
X3 2k; 0.842k; -30+ 2k X3 2 0
d= X1
The characteristic equation for the feedback system is given by
s —1 0
—-0.2 s 0.25

—2k; —-08—2ky s5+430—2k -
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P 5 0.25
—0.8 —2k; s +30—2k;

—-0.2 0.25
—2ky 5+ 30— 2k

= 5 + (30 — 2k3)s* + (0.5kz)s + 0.4k; + 0.5k; — 6

The feedback gains k;, k,, and k3 may be chosen to give any desired coefficients
of the characteristic equation of the feedback system. For example, if it is desired
to have the system poles at s = —1 + j2, —1 — j2, and — 3, the characteristic
polynomial would be

G+1—jE+1+2)+3) =5 +5>+11s+15
=5 +czs2 +cs+ ¢
which is achieved with
k3 =0.530 —c) =125
ky =2¢; =22
k1 =2(co + 0.2¢p) =32

For this choice of feedback gains, the feedback system model is

i 0o 1 0 x 0 0
Hl=102 0 —025||xm|+]|0 -1 [“‘}
s 64 448 —5 || x 2 o |LS
X1
d=[1 0 01| x
X3

The steady state output d due to a unit step disturbance input fis given by
0=[A+ BK]lx + Bu
d=x1 uwu1=0 f=1

So that

0
[A+BKlx=—Bu=—|-1|=|1
0 0

Cramer’s rule can be used to obtain d = x;. It is instructive to write the gain values
in terms of the desired characteristic polynomial coefficients.

0 1 0
1 0 —-0.25
0 4c¢+0.8 —C2 Ccy 1
d= X1 = _— = ——
0 1 0 —Co 3
0.2 0 —0.25

4(cog +0.2¢3) 4c1.+08 —c2
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which depends only on the desired performance. Further study would be needed to
determine whether this amount of disturbance rejection from track irregularities is
sufficient. The negative algebraic sign simply means that a positive step in f = &
results in a steady state decrease in the gap distance. Types of disturbance other than
constant ones should also be considered in the design.

The reference input #; would normally be a constant that sets the nominal gap
distance. The steady state gap distance d due to a constant reference input %, where f
is zero (level track) is given by

0=[A+BK]x+ Bu u=[”3]

0
[A+ BK]x =—Bu = 0
—2141
d=x1

Again, Cramer’s rule can be used to obtain d = x; where it is instructive to write the
gain values in terms of the desired characteristic polynomial coefficients

0 1 0
0 0 —0.25
—2u; 4¢;+08 —c;
d=x = — .
_ 0.5141
=— B

For a nominal gap of 10 mm, the reference input should be
u; = —(20)co = —300

which depends only on the nominal gap and on a coefficient of the desired
characteristic polynomial.

Figure 9.24 shows calculated system response where the train accelerates from
a standstill and traverses an irregular guideway with a downgrade followed by an
upgrade. In the German system, the nominal air gap distance is 14 mm (about % n.).
Improvement in disturbance rejection is obtained by modeling the track irregularities
by differential equations that are included as part of an observer. Three levels of
complexity are used depending on whether the track is level (actually somewhat
‘curved between towers), following a hill, or following a curve.

Space does not permit a complete discussion of the system; however, one feature
is of interest. The rate of change of the air gap is also estimated by using an observer.
The state vector may be reordered as follows:
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Figure 9.24 MAGLEV system response. (a) Response of the system with state feedback.
(b) Improved response with disturbance modeling and feedback.

because d and { can be measured and the rate of change of d must be estimated
by a reduced-order, first-order observer. The concepts of control and estimation
can be separated (as mentioned earlier in this chapter); therefore, the open-loop
system matrix is used to compute the observer dynamics. As a result of reordering,
we have

0o 0 i1 0
A=|0 30 i08) B=|2
02 02510 0

The reordering is the result of augmenting the C matrix by T and transforming the
state equations.

C =

T

Suppose the observer pole is selected at —10. Following the given design procedures,
we get

010

(1)] choose TasT =[0 1 O] then
1
0
0

00
0 1| and Q=P7' and C‘=CQ=|:1 0 0}
1 0

1

Ap—LAp=0-[l L] |:08

] =—I; — 0.8, =-10

This results in one equation and two unknowns. We can set/; to zero so that/; = 12.5.
Computing the remaining observer parameters, we get

F=[0.2 —249.25] G=-25 D=-10

Therefore, the observer equation is given by

7= —10z + 0.2x; 4 249.75x, — 25u
X3 =2z+ 12.5x;



A MAGNETIC LEVITATION SYSTEM

665

Figure 9.24(b) shows the improved performance when an observer estimates track
motion. The closed-loop system also uses the observer estimate of d for feedback

control.

(0 Computer-Aided Learning
To find the state feedback gain we use the “place” command with the following
syntax:

K=place(A,B,DP)
where DP stands for the vector of desired pole locations. The only restriction is that
desired poles must be distinct (not repeated). The “place” command also works in

the multiinput case.
For example, let us place the poles of the following system in —1 =& j.

. 1 2 -1
X = (3 4)x+( 6)“
y=(0 —14)x+8u
‘We enter the following commands:
a=[1,2;3,4];b=[-1;6]1;c=[0,-14];d=8;
g=ss(a,b,c,d);
dp=[-1+j, -1-jl;
k=place(a,b,dp)
place: ndigits=15
k=
1.0 1.3333
We can verify our work by finding the closed-loop poles by
eig(a—b*k)
ans=
-1.0000+1.00001
-1.0000-1.00001
MATLAB also has an implementation of the Ackerman formula under the
“acker” command. This command only works for single-input systems but does
not require that the poles be distinct. Here is an example:
k=acker(a,b,dp)
k=
1.0000 1.3333
‘We can place both poles at —1, —1:

dp2= [_1 ] —1] H
k2=acker(a,b,dp2)
k2=

0.9310 1.3218
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C9.1 Redo Drill Problems D9.1-9.3 using the “place” and “acker” commands.

Observer Design

Because of the duality that exists between control and observer problems, the same
commands can be used for observer design with modified inputs as shown next.
For full-order observer, use
L=place(A’,C’,0DP)’
For reduced-order observers, use
L,=place(422’,A12’ ,0DP)’
Where ODP are the observer desired poles. Note that in the single-output cases
we can use the "acker” command if the observer poles are repeated.
We will design a full-order observer with poles at —5 &+ j5 for the system just
described.
odp=b*[-1+j, -1-j]; 1=place(a’,c’,odp)’
Place: ndigits=156
1=
-1.5952
-1.0714

C9.2 (a) Use MATLAB to solve Drill Problem 9.5.

Figure C9.2
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Ans. (@) a=[-2,-4;1-41; b=[2;0]; c=[1 0];
odp=[-50 -50]; l=acker(a’,c’,odp)’
1=
94

-528
ac=[a zeros (2, 2); Lxc a-1*c] ;
bec=zeros (4,1); cc=eye (4); d=zeros (4,1);
[y,x,tl=initial (ac, bc, cc, zeros (4,1), [12-1-2], .B);
subplot (1, 2, 1), plot (t, y(:,1), %,y (:,3),
subplot (1, 2, 2), plot (t,y(:,2),t,y(:, 4)

(b) Use MATLAB to solve Drill Problem 9.6, verify closed-loop stability.
(c¢) Use MATLAB to solve Drill Problem D9.7.
(d) Use MATLAB to solve Drill Problem D9.9.

9.7 SUMMARY

The techniques discussed in this chapter are very powerful and have expanded the
range of problems that can be solved. If all the states are available, the advantages
of state feedback become apparent. All closed-loop poles can be placed at desired
locations in the complex plane as long as the system is controllable. If the system
is not controllable, we can still stabilize the system as long as the system is sta-
bilizable (i.e., the unstable modes are controllable). If some of the states are not
available for measurement, for technological or economic reasons, observers can
be implemented to estimate the states. Full-order or identity observer has a simple
structure; its structure is the copy of the system plus a correction term, multiplied
by observer gains. The observer gains can be computed to place the observer poles
anywhere in the complex plane as long as the system is observable. Reduced-order
observers reconstruct only the states that are not measured. For linear systems,
there exists a seperation between the control and the estimation problems. This
means that the poles of the closed-loop system (the interconnection of the con-
trolled plant and the observer) are the union of the poles of the controlled plant
and the observer.

Integral control, which allows us to eliminate steady state errors to constant inputs
can be designed by using state space methods. This is done by augmenting the plant
model by an integrator. Although not discussed here, it is also possible to track general
command inputs using the methods discussed in this chapter. A major limitation of
observer-based controllers is the lack of guaranteed stability margins. The methods
rely heavily on the plant models. Because we rarely have accurate models of our plants,
adequate stability margins are required to protect against these model uncertainties.
In some situations we may design a controller that works perfectly under computer
simulations but turns out to be unstable in practice. Therefore, any design must be
tested thoroughly to prevent disastrous results.
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The design of a magnetically levitated train exemplifies state space representation
and controller and observer design.
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PROBLEMS

1. For the state feedback systems described by the following equations, choose the
feedback gain constants ; to place the closed-loop system poles at the indicated
locations. Then, for the feedback system, find the steady state outputs due to a
unit step input.

@ 1 0 1 0 0][xn 1
X | 0 0 1 0 X2 " 0 "
sl | 0 0 0 1|]x 0
J'C4 -8 -3 -7 -5 X4 1
X1
u=—|:k1 k2 k3 k4- &2 +r
J ,X3
X4
_xl_
12 -1 0 3 X2
Tl o001 =2 || x
Closed-loop poles at s = =5+ j3, —4 % j4
(b) 1 0 1 0]|[x] [o —1 .
132 = 0 0 1 X2 + 0 0 |: ]
.1-73 -10 -5 -2 _JC3_ 1 7
X1
u=—[k1 kz k3] X2
x3
X1
y=[1 0 0]| x2
X3

Closed-loop poles at s = —4 and — 4 + j2
Ans. ky =470, ky = +47, k3 = +10, y(oo) = —0.5625
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2. Design first-order observers of the following plants. Choose the observer

eigenvalues to be at s = —30.
@ ] [=2 1 0][x 0
.iz =|—-4 0 1 x| + 1lu
X3 | -2 0 0 X3 -1
_[r o o]}
Y“lo 1 o™
L. x3
(b) X1 0 1 X1 0
= -+ u
X2 —4 -2 X2 3

3. Design identity observers for the following plants. Choose the observer eigenval-
ues to be at —20.

*efs2] f

y=x1

(b) 0 1 0
SR H
y=x

4. For the systems of Problem 3, design control gains to place the desired closed-
loop poles at —5 and —8, assuming the measurements are available. Next, close
the loop by using a reduced-order observer to furnish an estimate of x,. Show that
the characteristic polynomial of the closed-loop system including the observer
contains the desired closed-loop roots and the observer root.

5. Consider the system given by

x = 20 x4+ ! u
-1 1 -1
y= [Cl &) ]x
(a) Determine whether the system is controllable.

(b) Determine whether the system is stabilizable.

(c) Find the transfer function, T (s), if ¢; = ¢, = 1.



PROBLEMS 671

(d) Repeat(c)forc; =1, cp=—1.
(e) Can state feedback be used to stabilize the system?

Ans. (a) uncontrollable; (b) not stabilizable; (c) T(s) = 0; (d) T(s) =
2(s — D/[Gs — (s —2)1=2/(s — 2) (e) no.

6. Consider the system given by

0 1 -1 1]
i=|-2 =3 o|x+]|o0]«

P 1 1 0
y=[0 0 1k

(a) Determine the values of the parameter p for which the system is controllable
(observable).

(b) Find the transfer function of the system.

(c) Determine for what values of the parameter p the system is stabilizable
(detectable).

7. Consider the system

210 1
X2 = 1 0 1 |(x+]|31u

-2 0 0 2
y=I[1 0 0lx

(a) Determine its controllability and observability.

(b) Diagonalize the system; that is, find {A, B, C_'} .

(c) Identify the modes that are either uncontrollable or unobservable.
(d) Find the system transfer function.

(e) Determine the stabilizability and detectability of the system.

8. Consider the linear system

1 2 -1 0
=10 1 O0]|x+|0|u
1 -4 3 1

y=[1 -1 1Ix

Determine the controllability, observability, stabilizability, and detectability of
each mode. Also find the system transter function and note any pole-zero
cancellations.
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9. Consider the following plant and answer the following questions.

10.

11.

12.

[ [

y= [01 (%) ]x
(a) Is the system controllable?
(b) Is the system observable?
(c) Find a control gain vector, £, to place plant polesat { —1, —2}, if possible.
(d) Repeat (c) for poles at { —2, —21}.
(e) Explain any discrepancy in answers to (c) and (d).
(f) Find the transfer function whenc; =1, ¢; = 0.
(g) Repeat(f) forc; =0, ¢ =1.

(h) Given the answers in (f) and (g), which state variable should be measured
to stabilize the system using observers?

Consider the plant, G(s).

Use state feedback to move the closed-loop poles to s = —1, —1.
(a) Find control gain, k.
(b) Design a reduced-order observer with pole at s = —2.

(c) Find the open-loop transfer function of the compensated system and use it
to plot the root locus.

Design a first-order observer for the following system. Place the observer pole
at —1. Also design a controller to place system poles at —1 £ j. Obtain the
compensator transfer function and draw the root locus of the open-loop transfer
function.

Use computer software to simulate the system. For simulation purposes, the
plant initial conditions are 1 and 2. Set the initial condition for £, at — 2.

[ el

y=I[1 0l

It was mentioned in this chapter that an optimal choice for observer initial con-
ditions is given by £(0) = C’(CC’")'y(0). Repeat Problem 11 by designing a
full-order observer with poles at —2 +2 j. Simulate the closed-loop system using

observer initial conditions of x(0) = [ N ] Then, to repeat the simulation, use

optimal initial conditions [note that y(0) = 1]. Compare the zero-input responses
in both cases.



PROBLEMS

67:

13. Consider the following plant: ¥ = Ax + Bu, where the state space matrices are

14.

15.

given by
01 0 1
A=(0 0 1 B=|2 C=[1 0 0] D=0
2 0 -1 0

(a) We want to place the closed-loop poles at {—10, —1+ j, —1 — j}.Find the
state feedback gain vector.

(b) Obtain the equivalent transfer function of the compensator, root locus, Bode
plots, and closed-loop step response. Tabulate the step response and frequency
response features such as percent overshoot, rise time, settling time, and phase
and gain margins.

(c) Design a full-order observer. Choose observer poles at {—40, —4 + j4, —4 —
J4}. Repeat (b).

(d) Design a reduced-order observer. Choose observer poles at {—4 + j4, —4 —
j4}. Repeat (b).

(e) Repeat (c) with the observer poles at {—40, —1, —2}.

(f) Repeat (d) with the observer poles at {—1, —2}

Note: In () and (f), the observer poles are chosen at the plant zeros. Itis known
that such a choice increases the robustness of the system. Because phase
and gain margins are classical measures of robustness (protection against

uncertainty), compare the margins in all cases. Does the choice of observer
poles in (e) and (f) really improve the margins?

(2) To verify robustness, let us assume that the A matrix of the true plant model is

01 O
A = 00 1
-2 0 -1

Use the control gain vector of (a) to obtain the step responses and frequency
responses for the true system, using the observers designed in (c)~(f). Com-
pare the responses, and determine which observer design is more robust to
parameter uncertainty and variation.

For the MAGLEYV system choose instead values of the feedback gain constants
ki, ko, and ks to place all three of the overall system poles at s = —5. For this
system, find the steady state response d to a unit step disturbance f and the value
of constant reference input #, to give a nominal gap distance d = 15.

For the open-loop MAGLEYV system, suppose the vertical track elevation varies
sinusoidally with time as the train is in motion, according to

. Tt
h(t) = 0.2 sin —
@) SmlO
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Find the second-order differential equation satisfied by A(z), then augment the
original state equations with two more equations and two more state vatiables

x4 = h()
xs = h(t)

in place of the disturbance input f = k. With additional sensors for the signals
x4 and x5 and feedback of the form

u = +kix1 + kaxo + kaxs 4 kaxa + ksxs + uq

find the state equations for the feedback system in terms of the k constants.



CHAPTER

Advanced State
Space Methods 1 O

10.1 Preview

In the preceding chapters, compensators were designed to satisfy specified require-
ments for steady state error, transient response, stability margins, or closed-loop
pole locations. Meeting all objectives is usually difficult because of various trade-
offs that must be made and because of the limitations of the design techniques. For
example, classical Bode design allows us to satisfy phase margin and steady state error
requirements, but the step response characteristics may not be desirable. State space
observer-based techniques allow arbitrary pole placement, but the stability margins
cannot be controlled directly. Also, none of the techniques discussed so far address
practical issues such as plant model uncertainty or actuator signal limits. In addition,
none of the techniques result in the best possible performance. This chapter addresses
some of these issues. In particular, we present optimization-based techniques that
result in an optimal solution.

Optimization refers to the science of maximizing or minimizing objectives. Opti-
mization requires a measure of performance. When mathematically formulated, this
measure of performance is called the objective (or cost) function. Optimization of
control systems is called optimal control. Optimization problems are either con-
strained or unconstrained. For example, finding the minimum of a parabola is an
unconstrained optimization problem. Finding the minimum of a parabola in a given
interval of its domain is a constrained optimization problem. You have seen exam-
ples of these types in calculus. Calculus-type problems are usually static problems
because the constraints are algebraic equations. Optimal control problems are usually
constrained dynamic optimization problems because the constraints are the system
equations, which are differential equations (i.e., they are dynamic). Simple examples

67:
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of optimal control appear in Section 3.5, where a gain or damping ratio is found to
minimize the tracking error in a control system. In this chapter a more general and
systematic treatment of optimal control is presented.

A typical optimal control problem formulation is the following:

T
nﬁn]:f L (x,u,t)dt subjectto x= f(x,u,t)
u ()

Here the plant is a nonlinear system, which is the constraint, and the cost function is the
integral of some nonlinear function of the state x, control u, and time. The objective is
to find a control function u that will minimize the cost function. Examples of optimal
control problems are minimum time, minimum fuel, and minimum energy (more
examples appear in Section 3.5). This formulation, in general, leads to controllers that
are time-varying and nonlinear. Analog implementation of these nonlinear controllers
is not usually practical or worthwhile.

10.2 The Linear Quadratic Regulator Problem

We will now restrict our attention to linear systems (or linearized versions of non-
linear systems) and choose a cost function that is a quadratic function of states
and controls. In this case, the solution is a linear controller that is easily imple-
mented. Hence, we will consider a special optimal control problem, called the linear
quadratic regulator (LOR) problem. The formulation of the problem follows. Given
the linear system

X= Ax + Bu
y=Cx

find a control function u(t) that will minimize the cost function J given by

1 o0
J = —/ (x'Qx + u'Ru) dt
2/,

The function inside the integral is a quadratic form and the matrices Q and R are usually
symmetric (see Appendix A for a brief review of quadratic forms). It is assumed
that R is positive definite (i.e., it is symmetric and has positive eigenvalues) and Q
is positive semi definite (i.e., it is symmetric and its eigenvalues are nonnegative).
These assumptions imply that the cost is nonnegative, so its minimum value is zero.
For the cost function to achieve its minimum value, both x and # must go to zero.
This type of control problem is called a regular problem. When the state vector is
to track nonzero values, J can be redefined to create an optimal servomechanism
(tracking) problem. Many of the control systems considered in earlier chapters were
servomechanisms. Regulator behavior is important for control systems of many types
(e.g., attitude control. of satellites or spacecraft, where a zero reference should be
maintained in spite of disturbances).
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A simple interpretation of the cost function is as follows. If the system is scalar
(i.e., a first-order system), the cost function becomes

1 oo
J== f (gx* +ru®)dt
2 Jo

Now we see that J represents the weighted sum of energy of the state and control.
Small g and r are used, respectively, when x and u are scalars. If r is very large relative
to g, which implies that the control energy is penalized heavily, the control effort will
diminish at the expense of larger values for the state. This physically translates into
smaller motors, actuators, and amplifier gains needed to implement the control law.
Likewise if ¢ is much larger than 7, which means that the state is penalized heavily,
the control effort rises to reduce the state, resulting in a damped system. In the general
case, Q and R represent respective weights on different states and control channels.
For example, if

10 O
Q=I:l 0] and R = r (a scalar)

Then
x'Qx +u'Ru = 10x? + x3 + ru®

By putting a larger weight on the first state, we are putting more emphasis on
controlling this state and restricting its fluctuations.

Several procedures are available to solve the LQR problem. Since optimization
can easily become the subject for several textbooks, we will present only the main
results. The work of mathematicians and engineers such as Hamilton, Euler, Lagrange,
Jacobi, Pontryagin, Kalman, and Bellman have resulted in a rather complete under-
standing of the optimal control problem. Actual implemented control systems that
have been designed by these methods were few in number as of the early 1990s, but
they are now more popular.

One approach to finding a controller that minimizes the LQR cost function is
based on finding the positive-definite solution of the following algebraic Riccati
equation (ARE).

A P—PA+Q—-PBR'B'P=0
u=—Kx K=R'BP

It turns out that under the conditions stated shortly, the positive-definite solution of
the ARE results in an asymptotically stable closed-loop system. The conditions are
the following. The system is controllable, R is positive definite (this ensures that its
inverse exists), and Q can be factored as Q0 = C"I C,, where C, is any matrix such that
(C,, A) is observable. These conditions are necessary and sufficient for the existence
and uniqueness of the optimal controller that will asymptotically stabilize the system
(these assumptions can be relaxed to stabilizability and detectability). Note that the
assumption on Q allows us to define another output vector z as

z=0C4x

Scalar LQR problem.

LQR Solution.
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Solving the double integrator
problem by LQR.

therefore
' ! ! ':
xQx=xCCox =22

the vector z is called the controlled or regulated output, and may differ from the
measured output y.

Manually solving the Riccati equation is tedious and almost impossible for
third- or higher-order systems; the second-order example, however, can be solved.
Let us consider the double-integrator example considered in Chapter 9. The system
matrices are

01 0
A=|i0 0] B=[1] Cq=[1 0]

1 0
Let us assume Q and R are given by Q = 0 0 and R =1.

First, we will check to see if the conditions are satisfied. The system is controllable
because the matrix [B A B] has rank 2. Q can be factored as

10 1 ,
Q=[O 0]:[0][1 01=C,C,

The observability condition is also satisfied because the matrix CC‘LX has rank 2.
q
Therefore, the ARE will have a stabilizing solution. Now, the ARE becomes

0 0|lp1 P2 Lo 0 1 N 10

1 0||p2 ps3 p2 pa|l0 O 00
e 2|0 Offpr p2f |0 O
p2 p3{|0 1| p2 ps 00

Multiplying and adding the matrices, and setting the sides of the equation equal to
each other, element by element, we get three coupled algebraic-quadratic equations.
In this case, the equations are very simple (usually, they are quite horrendous) because
of the number of zero elements in the matrices. The equations are

p; =1
P1 = pa2p3
2p, — p5=0

Therefore,
1

F= V2

} and K=RI'BP=[1 2]
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The closed-loop system matrix becomes

0 1
A—BK=|:_1 */i:l

The closed-loop characteristic equation and its roots (closed-loop eigen values) are

ArVa+1=0

)~=§(—1=|:J')

Therefore, the system has been stabilized and it has a damping ratio of 0.707. Observe
that the optimal controller is of the state feedback form (i.e., we are assuming all states
are available for feedback). We discuss an observer design in the next section. Let us
obtain the open-loop transfer function and use it to obtain Bode plots and determine the
stability margins. The open-loop transfer function L(s) is given by (refer to Section 9.2
and Figure 9.3)

L(s)=K¢(s)B=K(s1_A)—1B=M

The Bode plots in Figure 10.1 show that the system has 65° of phase margin and
infinite gain margin.

O DRILL PROBLEMS

D10.1 For each of the following systems described by A and B matrices and LQR
performance criteria measured by Q and R, solve the associated algebraic Riccati
equation and find the optimal control gains.

(a) A=-2,B=4, 0=4, R=1
(b) A=2, B=4, =4, R=1

0 1 0 10

© A=[—10 —2}’B=[2]‘Q=[0 0]’R=1
0 1 0

@ A=[_10 _2]B=[2],Q

Ans. (a) P —=0.3904, k = +1.462;
(b) P = 0.6404, k = +2.562;
© P [0.3455 0.0495

il
—
o o
=
I
=
I
=

k=[0. g 4
0.0495 0.0242:" (0.1 0.048]

2.07 0

d p=|: 0 2.07:|,k=[0 —0.414]
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Figure 10.1 (a) Bode plots for the LQR design of the double-integrator plant. (b) The step
response for LQR design.

10.2.1 Properties of the LQR Design

LQR has many desirable properties. Among them are good stability margins and
sensitivity properties. We will also discuss the effects of weights in the LQR setting.
Most of these properties can be derived using the return-difference inequality first
derived by Kalman.

10.2.2 Return Difference Inequality

The algebraic Riccati equation can be manipulated to arrive at the following relation:
. 1 N
1+ Lol =1+ P |G, ()]
Where L(s) is the loop gain (open-loop transfer function) given by

L(s)=K®(s)B

where ® (s) = (sI — A)~!, relation assumes that Q@ = C;Cq and G, (s) =
C, P (s) B.
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Because the right-hand side of the return-difference equality (RDE) is always
greater than 1, the following inequality holds:

1+ L (jw)| > 1

The preceding return-difference inequality (RDI) implies that for all frequencies,
the Nyquist plot of the open-loop transfer function of an LQR-based design always
stays outside a unit circle centered at (—1, 0). A typical Nyquist plot is shown in
Figure 10.2. The term return difference, introduced by Bode, means the following.
Suppose a feedback loop is broken at a given point; inject a 1-volt signal at the
entrance of the point and measure the signal returned at the exit of that point; the
difference between the injected signal and the returned signal is called the return
difference. If the gain around the loop is —G H, the return difference is 1 — (—G H)
or 1 + GH. The return difference is a measure of the amount of feedback in a
feedback loop. It is an important quantity and appears in many expressions, such
as the denominator of the closed-loop transfer function and the sensitivity function
defined in earlier chapters.

The return-difference inequality, along with simple geometric arguments, can be
used to show that the LQR solution, in the SISO case, has at least 60° phase margin,
infinite gain margin, and a gain reduction tolerance of —6 dB. The latter means
that the gain can be reduced by a factor of % before instability occurs. Therefore,
an LQR design behaves quite well from a classical control point of view. It not only
always results in an asymptotically stable system but also provides guaranteed stability
margins. This is to be compared with the state feedback pole placement technique
discussed in Chapter 9, where stability margins are not known or guaranteed ahead
of time. Finally, observe that the LQR margins are a bit excessive in that lower gain
and phase margins are generally acceptable in most designs.

Another frequency domain property of the LQR solution is its high-frequency
roll-off rate. Recall that the closed-loop transfer function of state feedback design is

Im L(jw) Figure 10.2 Nyquist plot of an
LQR-based design. The plot always
stays outside the unit circle centered at
(-1,0).

Re L(jo)

Stability margins of LQR.



682

ADVANCED STATE SPACE METHODS

LQR Bode plot rolls off at
—20 dB at high frequencies.

The Hamiltonian matrix for
LOR.

Eigenvalues of H are
symmetric with respect to the
imaginary axis.

given by
T (jw)=—K (jol —A+BK)'B

it can be shown that
-1 -1
lim T (jw)= —KB=—R 'B'PB <0
@— 00 ]a) JQ)
The preceding implies that |T (jw)| drop as1/(jw) in the SISO case, indicating a roll-
off rate (i.e., a slope) of —20 dB per decade at high frequencies [see Figure 10.1(a)].
This, of course, affects the noise suppression properties of the optimal system and as
such is not very good. It can be argued that this defect is the result of the excessive

stability margins of the LQR solution.

10.2.3 Optimal Root Locus

We will see that a special choice of Q and R allows us to investigate the effects of
weights on the location of closed-loop poles. Let us assume that Q and R are given by

Q=C,C, ad R=pl
where p is a positive scalar. Then
x0x =7z
where z = Cyx
and the cost function becomes

1 o
J = —/ (Z'z + pu'u) dr
2 Jo

This means that we are minimizing the system output and control energy, and by
increasing p, we can put more emphasis on minimizing control energy. Definite the
following matrix, called the Hamiltonian matrix

A ! BB’
P

—C,Cy —A

Because of the special structure of the Hamiltonian matrix, its characteristic polyno-
mial is an even polynomial (i.e., if s is a root, so is —s). Therefore, it can be factored
as a polynomial with only LHP roots and a polynomial with only RHP roots (the
Hamiltonian has no roots on the imaginary axis). The Hamiltonian matrix is used
in formal proofs of the LQR problem, and the eigenvalues and eigenvectors of the
Hamiltonian matrix are used to solve the ARE (Potter’s method).

The optimal closed-loop poles will be the stable (i.e., LHP) eigenvalues of the
Hamiltonian matrix. If we denote the characteristics polynomial of the Hamiltonian
matrix by A, = |sI — H|, after a series of matrix manipulations, we arrive at the
following equation (n = number of poles, m = number of zeros, with m < n,
r=n—m)

H =

1
Ac(s)=(=D"AE)A(=s) [1 + ;Gq ()G, (—S)]
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where A(s) = |sI — A| and preceding G,(s) = n,(s)/d(s) is the transfer function
from u to z (the regulated output). The preceding equation simplifies to

1
(D" Ac () = A () A(=s) [1 + ;Gq () G, (—S)]

1
=d (s)d(—s) + ;nq ($)ng (—s)

This has the standard root locus form. It implies that the optimal closed-loop poles
can be obtained from the root locus of G, (s) G4 (—s) . Such root loci are generally
called a symmetric root locus or root-square locus. We will discuss the effects of
limiting values of p.

Minimum Energy Control (or Expensive Control) Case

As p— 00, (=D"A:.(s) > d(s)d(—s)

Because the optimal closed-loop poles are always in the LHP, we conclude that as the
control weighting is increased, the stable open-loop poles will remain where they are
and the unstable ones will be reflected about the imaginary axis. This property can
be used as a guideline for pole placement.

Cheap Control Case

Asp— 0, (=D)"A.(s) = ng(s)n, (—s) for finite s
Hence, the closed-loop poles approach the plant finite zeros or their stable images.
For values of s approaching , the closed-loop poles will approach zeros at infinity in
the so-called Butterworth pattern.

a2\ ¥ k(r 4 1)
for |s| > 00 s={-2 EXpl\J——FT
p 2r

where ay, is the coefficient of the highest-order term in n,4 (s).
As an example of root-square locus (RSL) consider the following system

] k = odd integer

5
G = ——
a(5) s2+5+5
Then the optimal characteristic equation is given by
1 25

0

MY R Y S
The optimal closed-loop poles are along the LHP branches of the RSL shown in
Figure 10.3. Note that the RSL is symmetric with respect to both the imaginary
and the real axes. The RSL shows what happens to the poles as the control cost
weight (p) increases from 0 to infinity (note that the actual root locus gain 1/p).
When p approaches infinity (i.e., the root locus gain goes to 0), the closed-loop poles
approach the plant open-loop poles; therefore, when control is expensive and the

Root locus of Gy (s) G4 (—s)
gives the optimal pole
locations.

RSL example.
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Another RSL example.

RSL example.

3 Figure 10.3 Root-Square locus
\ / for G ().
2

Imaginary
o

TN

-3 -2 -1 0 1 2 3
Real

plant is stable, the best choice is to do nothing and leave the poles where they are.
When p approaches O (i.e., the root locus gain goes to infinity), the closed-loop poles
approach the plant open-loop zeros at infinity.

Now suppose that the plant is unstable and is given by

Gq(s)=s—_2—s+5

We obtain the same RSL as shown in Figure 10.3. The interpretation is slightly
different here. In the minimum-energy control case (expensive control), the best
choice is to reflect the unstable poles about the imaginary axis. In either of these
examples, the optimal characteristic equation for the minimum-energy control case is

s245+5
To find the optimal control gain K using RSL, we first determine the optimal pole
location from the RSL, form the characteristic polynomial, and set this equal to the
characteristic polynomial of A — BK and solve for K. For example, in the preceding
case, we get

IsI — (A — BK)| = s>+ (=1 +5k2) s + 5 + 5k

=s*+s+5

Therefore,

ki=0 and k=04
Let us consider another example.

5 and 1+ 1 s
s242s+10 p(s2+2s+10)(s2—2s+10)
The RSL for positive p is shown in Figure 10.4(a). Note that for positive o the locus
has imaginary poles, and this cannot correspond to an optimal system. Therefore, we
have to use negative-gain sketching rules for root locus. The optimal locus is shown

in Figure 10.4(b). In this example, this was clear because of the negative sign in the
numerator. In general, if  (the number of poles minus the number of zeros in the plant

G,(s) =
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Figure 10.4 (a)'Root-square locus using positive gain. (b) Root-square locus using nega-
tive gain.

transfer function) is odd, we have to use negative-gain sketching rules; otherwise we
use positive-gain sketching rules for plotting the root locus.

U DRILL PROBLEMS
D10.2 Consider the systems presented in Drill Problem 10.1. In each case, factor
0= C[I C, andlet R = p. Then find G, (s) G, (—s) and plot the appropriate
root-square locus.
Ans. (@) 0=4=2(2),C;=2,G,(s) Gy (—s) =
[8/(s + 2)1[8/(—s +2)]

b) @ =@2)(2),Cq=2,G4(s) =[8/(s —2)I[8/(~s —2)]
© Q=[(1)][1 01.C, =[1 01,G,(s) =

[2/(s* + 25 + 10)][2/(s? — 25 + 10)]
@ o=} 1c=mw0 1,

G, (s) =[2s/(s + 25 + 10)][ — 25/(s® — 25 + 10)]
See Figure 10.4(b) for the RSL

10.3 Optimal Observers—the Kalman Filter

The LQR solution is basically a state-feedback type of controller—i.e., it requires
that all states be available for feedback. It was argued in the previous chapter that this
is usually an unreasonable assumption and some form of state estimations necessary.
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In addition, the concept of the observer was introduced and it was shown that the
combination of the state feedback and observer will always result in a stable closed-
loop system. In chapter 9, however, the designer was left with the responsibility of
choosing the controller and observer poles. We have seen in the previous section
that the controller performance can be optimized according to some quadratic cost
function, resulting in optimal controller pole locations. The next obvious question
is whether the observer design can also be done in an optimal manner. The answer
is affirmative, provided the problem is formulated in a probabilistic (or stochastic)
sense. The formulation of the state estimation problem is as follows

x=Ax+Bu+w
y=Cx+v

where w represents random noise disturbance input (process noise) and v represents
random measurement (sensor) noise; we also have to assume some statistical knowl-
edge of the noise processes. For instance, in the case of an aircraft, the plant is subject
to random wind disturbances (or process noise), and the measurement instrumenta-
tions (sensors) are not always accurate and may include random errors (sensor noise).
Ships and other marine vessels are subjected to random wave motions (which may
also have strong periodic components), and in general, most systems are subject to
both kinds of random inputs.

The state-space solution to this problem was first provided by R.E. Kalman and
R.S. Bucy. The optimal observer (commonly known as the Kalman filter) is given by

%=Ai+Bu+L(y—Cd)

where % is the estimate of x. The observer gain is computed from
L=3CR™!

and X is found as the positive semi-definite solution of
AL+ XA +Q,—ZCR;'CZ=0

Note that the equation for the filter gain and X are very similar to the equations for
the LQR solution. In particular, the equation for X is an algebraic Riccati equation.
There are two matrices that appear in the filter equation that require some expla-
nation. They are Q, and R,. These matrices represent the intensity of the process
and sensor noise inputs and are the only parameters that are to be provided by the
user. In the mathematical subject of random processes, these matrices are known as
co-variance matrices. Their size (usually measured by their trace, the sum of the
diagonal elements) is a measure of how strong the noise is—the larger the size, the
more random or intense the noise—hence we refer to it as noise intensity. The Kalman
filter attempts to minimize the size of the estimation error intensity (the intensity of
the estimation error is given by X). Finally, we note that the mathematical conditions
that are needed for the solution of the Kalman filter problem to exist are the follow-
ing: Q,and R, must be positive semidefinite and positive definite respectively, and
the system must be observable.

Estimation theory and, in particular, Kalman filter theory are vast and important
areas that are common to control and communications. There are many reported
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successful applications of Kalman filters in a wide range of areas (many more than
LQR implementations). Because our interest lies in control system design rather than
pure state estimation, we will return to the control problem without pursuing this
subject any further. Hence, we view the Q, and R, matrices as design parameters, not
necessarily related to physical noise processes.

10.4 The Linear Quadratic Gaussian (LQG) Problem

Given an optimal filter to estimate the states, the next question is whether the closed-
loop system remains stable and optimal when we combine the LQR controller of
Section 10.2 and the Kalman filter of Section 10.3. This problem is known as the linear
quadratic Gaussian (or LQG) problem. The term Gaussian refers to the statistical
distribution of the noise processes. The plant equations and the problem solution are
repeated:

x=Ax+Bu+W
y=Cx+v
The controller portion is given by
u=—Kz (1)
K =R'B'P
A'P+PA—PBR'BP4+0=0
The observer (or filter) portion is given by
x"‘=AJ?+Bu+L(y—C£)
L=XCR™
AX +TA +Q,— TC'R;'ICEZ =0

It can be shown that the LQG solution results in an asymptotically stable closed-loop
system. In addition, the controller minimizes the average of the LQR cost function
(i.e., the weighted variance of the state and input), resulting in an optimal solution.
Because the structure of the controller and the Kalman filter are similar to the observer-
based compensator discussed in Chapter 9 (the major difference is how the control
and filter gains are computed), the LQG compensator will also exhibit the separation
property (the mathematical proof of this fact is actually quite involved). Hence, the
closed-loop poles will be the union of the controller poles and the filter poles, and
the controller and the filter can be designed independently of each other (this means
that the filter equation do not contain K or P, and the control equations do not depend
on L or X).

The transfer function of the LQG compensator is similar to the observer-based
compensator, and is given by

H(s)=KGI-A+BK+LO)'L

LQG compensator.
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LQG design for the
double-integrator system.

LQR and LQG comparison
for the double-integrator.

Let us obtain an LQG compensator for the double-integrator plant. The controller
portion has already been found, so we will design the Kalman filter. We will assume
the noise intensities are

1 0
Qa=|:0 1:| and R,=1

The filter Riccati equation results in three coupled algebraic nonlinear equations:

a?=2b+1
ab=c¢
b’ =1
where X = a bi|
b ¢
Therefore,

>:=[‘/1§ Jg] and L=>:C'R;1=[‘{§]

The transfer function of the compensator is given by

3.14 (s + 0.31)
GG+ 157+ j1.4) (s + 1.57 — j1.4)

Further computation shows that the closed-loop poles are at the locations of the
controller and filter eigenvalues, respectively:

H(s) =

2 —~/3tj
Closed-loop poles = % -1+, > J
The root locus, open-loop magnitude and phase plots, closed-loop magnitude plot,
and closed-loop step response of the system are shown in Figure 10.5. The Bode plots

indicate a gain margin of 10.7 dB and phase margin of 34.5°. Let us now compare
the LQR and LQG designs.

1. LQR has much higher stability margins.

2. The low-frequency gain in LQR is 40 dB and in LQG is 27 dB. Hence, LQR
will have better steady state tracking properties (recall that error coefficients are
obtained by letting s approach 0, so as low-frequency gain in the open-loop
magnitude plot determines steady state error properties).

3. The gain-crossover frequency is higher in LQR. This means that LQR has a higher
bandwidth, so it passes more noise into the system. Also, since gain crossover
frequency is inversely related to the speed of response, this indicates a faster
response in LQR, as can be seen in the step response.

4. The high-frequency roll-off rates, approximated by the slope of Bode magnitude
plot in Figure 10.5(b), are —60 dB and —20 dB in LQG and LQR, respectively.
This means that LQG has better noise suppression properties.



THE LINEAR QUADRATIC GAUSSIAN (LQG) PROBLEM

689

40
e [ TTI0
~~L]][[|GM=10.7d
0 I
=20
[y
Qg —40 N
-60 S
2 —80
sl ~100 [
: =120
1 -
-140°
g o ~160° -
-Eo 0 -~ r -180° E \
H _os| § o RN
1L A —220° N
- -240° N
-1.5F ~260° NN
-2 1 | 1 1 1 1 | 1 1 _2800
-3 -25-2-15-1-05 0 05 1 15 0.1 1 10 100
Real -
@ )
1.2
l (—
0.8 |-
0.6 -
04 |-
0.2 |
0 ! | | l | | 1 1 !
0 1 2 3 4 5 6 7 8 9 10
Time
(©)

Figure 10.5 Classical root locus for LQG design. (b) Open-loop Bode plots for LQG design.
(c) Closed-loop step response for LQG design.

In this example, we see the trade-offs involved in control system design. Stability
margin is traded off with high-frequency roll-off rate. Gain crossover frequency (or
bandwidth) is traded off with speed of response.

We will now examine the Nyquist plots for both cases shown in Figure 10.6.
As predicted by the return-difference inequality, the LQR plot avoids the unit cir-
cle centered at (—1, 0), whereas the LQG plot enters it. This shows that the LQG
open-loop transfer function does not satisfy the return-difference inequality. This has
very important implications because the RDI is the basis for the guaranteed stability
margins of LQR. In fact, it has been shown by counterexamples that LQG has no
guaranteed stability margins and its margins can be dangerously low.

LQG has no guaranteed
stability margins.
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-2 -1 0
(a) ®)

Figure 10.6 (a) Nyquist plot for LQR design. (b) Nyquist plot for LQG design. The unit
circles centered at (0, 0) and (-1, 0) are shown.

You can experiment by changing the design parameters Q and R and the noise
intensities, and you will observe that some parameters can have drastic effects on
the system properties. But how does one choose these parameters? We will try to
investigate this question in the subsequent sections.

10.4.1 Critique of LQG

Early pioneers of control, particularly H. W. Bode and I. M. Horowitz, studied and
delineated most of the properties of feedback. In the early 1960s, with the birth
of modern control, optimality and the design of optimal control systems became
the dominant concern. The solution of the LQG problem was probably the high-
light of this era. However, the LQG paradigm failed to meet the main objectives
of control system designers. That is LQG control failed to work in real environ-
ments. The major problem with the LQG solution was lack of robustness. In a
series of papers, researchers showed that 1.QG-based designs can become unsta-
ble in practice as more realism it added to the plant model. The same kinds of
failure were also observed in industrial experiments with LQG. It became appar-
ent that the main culprit was too much emphasis on optimality and not enough
attention to the model uncertainty issue. During the 1980s, much of the atten-
tion was shifted back to feedback properties and frequency domain techniques
(which were the main features of classical control), and their generalization to
multivariable systems.

Section 10.6 discusses the loop transfer recovery (LQG/LTR) technique. This
method maintains the LQG machinery but modifies the design procedure to address
some of the shortcomings of the original LQG approach.
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U DRILL PROBLEM
D10.3 Consider the following system (Doyle, J. and Stein, G., IEET Trans. (Auto—
Control, August 1979).

x= L1 X+ 2 u+ ! w
o1 1 1
y=I[1 0lx+v
Let the LQR parameters be Q = qC'C, R = 1, and let the filter parameters be

1
Q, = qg[ 1 ][1 1], R, = 1. For each case given, compute gain and phase

margins and draw the Nyquist plot overlaid on the unit circle centered at the origin.

1.2

12 =106 - =10’
0.9 z°=1 09} BN Z°=‘
0.6 0.6 '

0.3 03
0 0

-0.3| 03

~0.6 0.6

—0.9 __/ 09} Vg

-1.2 _i 5 -1.2 _; o
1.2 q= 1.2 g=10"3
09 - o™ 09} \ 90=
0.6 |- 0.6 |-

0.3 0.3
0 0

-0.3 -03

-0.6 0.6 [

-09 __/ -09 /

(@)

Figore D10.3



692

ADVANCED STATE SPACE METHODS

10.5 Robustness

(@) ¢=10%10%1,10"3and g, =1
® g, =105,10%1,102and ¢ =1

w0 ou=[ 37 4 08 )

O i

o ou-[ 32 w2 Y
PM=:1—9 17,1 _491; _:2]

The ultimate goal of a control system designer is to build a system that will work in
real environment. Since the real environment may change with time (as components
age or their parameters vary with temperature or other environmental conditions) or
operating conditions may vary (load changes, disturbances), the control system must
be able to withstand these variations. Assuming that the environment does not change,
the second fact of life is the issue of model uncertainty. A mathematical represen-
tation of a system often involves simplifying and sometimes wishful assumptions.
Nonlinearities are either unknown, hence unmodeled, or modeled and later ignored
to simplify analysis. Different components of systems (actuators, sensors, amplifiers,
motors, gears, belts, etc.) are sometimes modeled by constant gains, even though they
may have dynamics or nonlinearities. Dynamic structures (€.g., aircrafts, satellites,
missiles) have complicated dynamics in high frequencies, and these may initially be
ignored. Since control systems are typically designed using much simplified models
of systems, they may not work on the real plant in real environments.

The particular property a control system must possess to operate properly in
realistic situations is called robustness. Mathematically this means that the controller
must perform satisfactorily not just for one plant, but for a family (or set) of plants.
Let us be more specific. Suppose the following plant is to be stabilized.

G(s) =

s—a

It is suspected that the value of the parameter a is equal to 1, but this value could be
off by 50%. If we design a controller that will stabilize the system for all values of
0.5 < a < 1.5,we say the system has robust stability. If in addition the system is to
satisfy performance specifications such as steady state tracking, disturbance rejection,
and speed of response requirements, and the controller satisfies all requirements for all
values of a in the specified range, we say the system possesses robust performance.
The problem of designing controllers that satisfy robust stability and performance
requirements is called robust control. This problem was investigated intensely during
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the 1980s and is still under investigation by many researchers following a variety of
approaches. We will present a brief introduction to the robust control problem in the
ensuring sections.

The underlying concept within control theory that has made it into a field of
science is feedback. The study of feedback and its properties is responsible for the
rapid growth of this field. What are these properties and why do we use feedback?
The answer is that feedback has many properties that are discussed, either implicitly
or explicitly, in this book. But there are two properties that a feedback system pos-
sesses that an open-loop system cannot have: sensitivity and disturbance rejection. By
sensitivity it is meant that feedback reduces the sensitivity of the closed-loop system
with respect to uncertainties or variations in elements located in the forward path of
the system. Disturbance rejection refers to the fact that feedback can eliminate or
reduce the effects of unwanted disturbances occuring within the feedback loop. It is
mainly for these reasons that feedback is used. An open-loop system (i.e., a system
with no feedback) does not have these properties. Of course, an open-loop system can
also eliminate certain disturbances, but it requires full knowledge of the disturbance,
which is not always available. Feedback is also used to stabilize unstable systems,
but feedback itself is frequently the cause of instability. The stabilizing effects of
feedback are emphasized so much in most texts that its other important properties are
forgotten by beginning (or even experienced) students of control.

10.5.1 Feedback Properties

A feedback control system must satisfy certain performance specifications, and it must
tolerate model uncertainties. We will study these issues from a frequency domain per-
spective. Consider the feedback system in Figure 10.7. The system has the following
inputs:

R(s) = command (or reference) input. This is the input that the system must be able
to follow or track.

D(s) = disturbance input. Disturbances are known or unknown inputs that the system
must be able to reject. Disturbances may represent actual physical disturbances
acting on the system such as wind gusts disturbing aircraft, disturbances owing to
actuators such as motors, or uncertainties resulting from model errors in plant or
actuator. Model uncertainties include neglected nonlinearities in plant or actuator
and neglected or unknown modes in the system.

D(s)

o

Y(s)

N(s)

S+

Figure 10.7 Block diagram of a feedback control system
including disturbance and measured noise inputs.

Two very important properties
of feedback.
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N (s) = sensor or measurement noise. This is introduced into the system via sensors,

which are usually random high-frequency signals.

A properly designed control system must track reference inputs with small error

and reject disturbance and noise inputs. The contribution of general disturbances to
the output must be small. The total output of the closed-loop system is

G(s)H(s) 1 G()H(s)

0= 5 6ore " TreeEe T THGOR
If we define the tracking error as e =r — y, we get
3 1 ~ 1 G(s)H(s)
EO =11 60r0 X " 5w TTromrm " ®

Finally, the actuator output (i.e., the plant input) is given by

U —&—[R() D(s)— N
©) = TG KO ~ PO ~ NG

Several quantities appear frequently in these relationships, they are

J(s) =14+ G(s)H(s) return difference
S(s) 1 ! ensitivit
5) = = Sensitv:
1+G®HE) TG Y
G(s)H
T(s)= () H(s) complementary sensitivity

T 1+ G(s)H(s)

It can be seen that, for all frequencies, the following equality holds:

SHO+TE) =1

Using the earlier definitions, we can write

Y(s) = S(s)D(s) + T()[R(s) — N(s)]
E(s) = SSIR(s) — D($)] + T(s)N(s)
U(s) = H(s)S(s)[R(s) — D(s) — N(s)]

We are now ready to draw the following conclusions from these relations:

1.

Disturbance rejection: S(s) must be kept small to minimize the effects of dis-
turbances. From the definition of §, this can be met if the loop gain (i.e., GH) is
large.

. Tracking: S(s) must be kept small to keep tracking errors small.
. Noise suppression: T (s) must be kept small to reduce the effects of measurement

noise on the output and errors. From the definition of 7, this is met if the loop gain
is small.

. Actuator limits: H (s)S(s) must be bounded to ensure that the actuating signal

driving the plant does not exceed plant tolerances. Another reason for taking this
relation into consideration is to reduce the control energy so that we can use smaller
actuators (such as motors).
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Tracking and disturbance rejection require small sensitivity. Noise suppression
requires small complementary sensitivity. Because these two transfer functions add
up to unity, we cannot reduce both transfer functions to zero simultaneously. We
can, however, avoid this conflict by noticing that, in practice, command inputs and
disturbances are low-frequency signals (i.e., they vary slowly with time), whereas
measurement noise is a high-frequency signal. Therefore, we can meet both objectives
by keeping S small in the low-frequency range and 7 small in high frequencies. The
control energy constraint requires keeping HS small. Note that

His) _ T()

1+ G(s)H(s) ~ G(s)
Hence, by keeping 7" small we can reduce control energy. Putting together these
effects, we arrive at a general desired shape for the open-loop transfer function (or
loop gain) of a properly designed feedback system. This is shown in Figure 10.8.
The general feature of this loop gain is that it has high gain at low frequencies (for
good tracking and disturbance rejection) and low gain at high frequencies (for noise
suppression). The intermediate frequencies typically control the gain and phase mar-
gins. Bode has shown that for a stable system, the slope of the magnitude plot should
not exceed —40 dB/decade; that is, the transition from low- to high-frequency range
must be smooth (e.g., —20 dB/decade). Desirable shapes for sensitivity and comple-
mentary sensitivity transfer functions are shown in Figure 10.9. Note that S must be
small at low frequencies and roll off to 1 (0 dB) at high frequencies, whereas T must
be at 1 (0 dB) at low frequencies and diminish at high frequencies. These properties
are summarized in Table 10.1.

H(s)S(s) =

10.5.2 Uncertainty Modeling

The preceding performance specifications apply to a stable feedback system. As we
discussed earlier, a stable system is not our final objective; rather, the stability must

lGH(jw)|

Gain above this level
at low frequencies

V.
/ 7
Midfrequency Gain below this level

detcn-nines at high frequencies
bandwith and

stability margins

A A

Figure 10.8 Desirable shape for the open-loop transfer
function of a feedback system.
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N

Gain below this level

Gain below this level at high frequencies

at low frequencies

Figure 10.9 Desirable shape for the sensitivity and complementary sensitivity of a feedback
system.

Table 10.1 Loop Transfer Function Properties

Low Frequency Mid Frequency High Frequency
Performance (R) High gain Smooth
transition
Disturbance rejection (D) High gain
Noise suppression (N) Low gain

be maintained despite model uncertainties. Model uncertainty is generally divided
into two categories: structured uncertainty and unstructured uncertainty. Structured
uncertainty assumes that the uncertainty is modeled and we have ranges and bounds
for uncertain parameters in the system. For example, we may have a valid transfer
function model of a system but have some uncertainty about the exact location of
the poles, zeros, or gain of the system. In the case of an RLC circuit we know
that it can be adequately modeled by a second-order transfer function (in a given
frequency range), but the components may have up to 20-30% tolerance. These kinds
of uncertainties are structured. Unstructured uncertainties assume less knowledge of
the system., We only assume that the frequency response of the system lies between
two bounds. Both kinds of uncertainties are usually present in most applications. We
will discuss only unstructured uncertainty. (Dealing with structured uncertainty is still
under investigation; owing to the complexity of the problem and space limitations,
we will not discuss this case.)

Unstructured uncertainty can be modeled in different ways. We will discuss
additive and multiplicative uncertainty. Suppose we model a system by G(s), where
the actual system is given by G (s)—That is,

G(s) = G(s) + Au(s)
Therefore, the model error, or the additive uncertainty, is given by

Au(s) = G(s) — G(s)
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In the multiplicative uncertainty case, we assume the true model, G(s) is given by
G(s) = [1 + An(9)IG(s)
The uncertainty, or the model error, is given by

Gis) -G
Ants) = ZT) = ©

Block diagram representations of these uncertainty models are shown in Figure 10.10.
Because multiplicative uncertainty represents the relative error in the model, whereas
the additive model represents absolute error, the multiplicative model is used
more often.

As an example, consider the flexible spacecraft example in Section 4.10. The
nominal plant model consists of the rigid mode, and is given by G(s). The true plant
model, G(s), must also include the flexible mode.

s24+2s 42

2 .

2

Modeling the flexible mode as additive uncertainty, we get

- —1
Ay(s) = G(s) — G(s) = e
[A,]
[ /L
R(s) e e
g Y, ORI
(@)
R(s)
(®)
m High frequency, model poorly known.
+ T~ Low frequency, model well known.
o A P +
gl o
(©) ()]

Figure 10.10 (a) Additive uncertainty. (b) Multiplicative uncertainty at the plant input. (c)
Multiplicative uncertainty at the plant output. (d) Typical shape for multiplicative uncertainty.
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R(s) Figure 10.11 Block diagram of a

feedback control system.

Using the multiplicative model, we have

G)—G@s)  —s*

An) = — G T tstD

10.5.3 Robust Stability

Consider a feedback system containing a plant and a compensator. Suppose the
compensator stabilizes the nominal plant model G(s). We say that the compensator
robustly stabilizes the system if the closed-loop system remains stable for the true
plant G(s). Most of the results and conditions for robust stability can be derived from
variations of the Nyquist stability criterion or the following very powerful result,
called the small-gain theorem.

Small-Gain Theorem

Consider the feedback system in Figure 10.11. Assume the plant and the compensator
are stable. Then the closed-loop system will remain stable if

|G(s)H(s)| < 1

Also, because of the following inequality
IGYH ()| < IG(s)| |H(s)]

We can also guarantee closed-loop stability if
|GG H(s)| < 1

In essence, the small-gain theorem states that for closed-loop stability, the loop gain
must be small. The Nyquist stability criterion can be used to justify the validity of
this theorem. Because we are requiring the open-loop transfer function to be inside
the unit circle, there can be no encirclements of the (—1, 0) point. In addition, we
are assuming that the system is open-loop stable; it follows from the Nyquist stability
criterion that the system has no closed-loop RHP poles and is therefore closed-loop
stable. We should also add that the small-gain theorem guarantees internal stability,
so all possible closed-loop transfer functions are stable and all internal signals will
remain bounded for bounded inputs.

We can use the small-gain theorem to answer two kinds of question about robust
stability. First, given that the uncertainty is stable and bounded, will the closed-loop
system be stable for the given uncertainty? Second, for a given system, what is the
smallest uncertainty that will destabilize the system? To use the small-gain theorem,
it is helpful to convert our system block diagram to a two-block structure, shown in
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Figure 10.11. Let us now derive the condition for robust stability under multiplicative
uncertainty. Consider the feedback system shown in Figure 10.12(a). To obtain the
two-block structure in Figure 10.11, we need to find the transfer function seen by
the uncertainty block. The input and output of this transfer function are shown at the
indicated points in Figure 10.12(b). It is given by [see Figure 10.12(c)]
_ —G(s)H(s)
T 14+ GE)H(s)
By the small-gain theorem, if the transfer function and the uncertainty transfer
function are stable, the closed-loop system will be robustly stable if
1

nl < -

|GH(1 + GH)™!|
Observe that the denominator of the right-hand side of the inequality is the
complementary sensitivity, 7, so the robust stability condition becomes

M(s)

|A

A —
|Apm| < 7|

‘We can use this result to answer the two questions posed earlier. Suppose the stable
uncertainty is bounded by

Al <y

) R

@ - I M(s

k) (©)

Figure 10.12 (a) Feedback system with multiplicative uncertainty. (b) Obtaining the transfer
function seen by the uncertainty. (c) The system as seen by the uncertainty.

Condition for robust stability.
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G(s) has no maximum, but it
has a supremum.

Condition for robust stability
{additive case).

Then the closed-loop system will be stable if
1
IT| < — or |pyT|<1
4

To answer the second question, we are interested in finding the size of the smallest
stable uncertainty that will destabilize the system. Because the uncertainty must be
smaller than 1/7, it must be smaller than the minimum of 1/7. To minimize the
right-hand side of the inequality, we must maximize 7. The maximum of 7 over
all frequencies is its peak value (also called the resonant peak in second-order sys-
tems: see Figure 10.9). Hence, the smallest destabilizing uncertainty (we call this the
multiplicative stability margin or MSM) is given by

1
MSM= —
M

r

where

M, = sup|T (jo)|
w

and the symbol “sup” stands for the supremum of the function. The supremum (or
least upper bound) of a function is its maximum value, even if it is not attained. This
is needed for mathematical reasons. We frequently encounter transfer functions that
have no maximum. For instance, the following transfer function (a lead network)

s+1

s+5
has no maximum (if you take the derivative of its magnitude and set it equal to zero,
you will get the minimum value of 0.2). However, a glance at its frequency response
shows that it approaches the value of 1 as the frequency approaches infinity. But
because we never reach the infinite frequency, we never reach the maximum value
(although we get very close to it). That is why it does not have a maximum. In these
situations, we use the notion of the supremum (or sup for short). We have

sup ljo+1]
o |jo+5|

The condition for robust stability under additive uncertainty modeling can be derived
using the same approach. The transfer function seen by the uncertainty, in this case,
is given by (see Figure 10.13)
_ —H()
T 14+ G@)H(s)

Hence, the closed-loop system will be robustly stable if

G(s) =

M(s)

|Aq| < or |Ag] <

1
|H(1 - GH)™!| |H S
If the uncertainty is stable and bounded by

ALl <y
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R Figure 10.13 (a) Obtaining transfer function seen
g 1 by the additive' uncertainty. (b) The system as seen
Output Input by the uncertainty.
R=0 + ¥+
> G(s) <
H(s) |-
(a)
»| Aa
M(s) -
(b)

then we can guarantee closed-loop stability if
1
IHS|<; or |yHS| <1

We can also define the additive stability margin (ASM) by
1

ASM = 5 ;
sup |[H(jw)S(jo)|

Note that for increased protection against destabilizing multiplicative uncertainties,
MSM must be large, implying that the complementary sensitivity must be small.
This is compatible with good noise suppression but conflicts with tracking and dis-
turbance rejection. Therefore, small loop gain at high frequencies will protect against
multiplicative uncertainties in the high-frequency range. Similarly, observe that the
appropriate transfer function for ASM is the same transfer function that determines
control energy (actuator limits). Therefore, these requirements are compatible.

Let us apply these results to an example. Consider the following plant and
compensator (the compensator is in the feedback path).

5-19) 56 +0.1)s+02
cro@rosyp M HO=TT5
The open-loop Bode plot of the system is shown in Figure 10.14. The system has a
phase margin of 38° and a gain margin of 9 dB. This means that a phase lag of 38°
or a gain increase factor of 2.8 (9 dB) will destabilize the system. Let us compute the
ASM and MSM for the system, For the MSM, we need to obtain the complementary
sensitivity and find its peak value. The plot is shown in Figure 10.15. The peak value
is 1.52, resulting in an MSM of 0.65. The interpretation of MSM is the following: the

G(s) =
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Figure 10.14 Bode plots of G(s) H (s).
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Figure 10.15 Frequency response of the complementary sensitivity for
determining the MSM.

system will be robustly stable against unmodeled multiplicative uncertainties with
transfer function magnitudes below 0.65. Two points need to be emphasized:

1. The uncertainty can be any stable transfer function, provided its magnitude is
below our bound.
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2. The small-gain theorem is only a sufficient condition (i.e., even if it is violated, the
system can still be stable). These stability margins (ASM, MSM) are sometimes
very conservative. Hence, the system may be able to tolerate uncertainties that
violate the bounds.

To check the conservativeness of the MSM, we modeled the uncertainty by a
first-order transfer function and varied its gains. With

14+ 0.2k
s+1

for & = 0, the gain of the uncertainty is the upper limit guaranteed by our theory. We
varied k from O to 10 in steps of 2, and it was discovered that the system becomes
unstable for k = 8 or

An(s) = % and 14 An(s) = s;ff
The step responses for these values of k (along with the nominal system (i.e., with no
uncertainty) are shown in Figure 10.16. The figure shows that the uncertainty causes
oscillations that will eventually lead to instability. Note that the transfer function that
is actoally in series with the plantis [14 A, (s)], which has a maximum destabilizing
gain of 2.7. Now, you may wonder why the system is unstable for a gain of 2.7 even
though it has gain margin of 2.8. To answer this question, we must be specific about
the meaning of gain, phase, and multiplicative stability margins. The gain margin is
the factor by which the gain can be increased before instability occurs. This assumes
no phase change, which implies that the gain margin is a measure of tolerance of
pure gain uncertainty. Likewise, the definition of phase margin assumes that the gain
is fixed, so phase margin is a measure of tolerance of pure phase uncertainty. MSM,
however, allows simultaneous gain ard phase changes. For example, the gain and
phase of [1 + A, (s)] near the gain phase crossover frequencies are:

Ap(s) = MSM

At the gain crossover frequency: @ = 1.57, gain = 1.67, phase = =27
At the phase crossover frequency: w = 2.8, gain = 1.30, phase = —24

Figure 10.16 Step responses for the
uncertain (or perturbed) system.
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Figure 10.17 Frequency response of 0.2 H (s)S(s) for determining additive
robust stability.

Therefore, at the gain crossover frequency, the uncertainty introduces a phase lag of
27° (the phase margin is 38) in addition to a gain increase of 1.67. Also, at the phase
crossover frequency, it multiplies the gain by 1.3, and adds 24° of phase lag. That is
why it is destabilizing: it is adding both gain and phase lag near the critical frequencies
of the system. In a sense, MSM is more general than gain and phase margins. For this
reason, MSM is sometimes called gain-phase margin.

We can also study the system tolerance to additive uncertainty. We ask whether
the system can withstand additive uncertainty transfer functions with magnitude less
then 0.2(y = 0.2). To answer this question, we obtain the frequency response of S,
and robust stability is guaranteed if

02H(jw)S(jw)| <1 for  |Au(s)| <02

Figure 10.17 shows the response. Because, its peak is less than 1, we conclude that
the system is stable in the robust sense, and ASM = 1.

U DRILL PROBLEM
D10.4 Consider the double-integrator plant compensated by a feedback lead
compensator.

1 20(¢s + 1)
G = — H = — -
W=5 HO=""5
Suppose the actual plant model contains an additive uncertainty given by
-1
A =
a(s) s2+s5+1

(a) Determine if the compensator H (s) stabilizes the plant G (s).

(b) Determine if the compensator H(s) stabilizes the actual plant given by
G,(5) = G(5) + Ay(s).

(c) Find M (s), the transfer function “seen” by the uncertainty.

(d) Draw Bode plots of A,(s) and M(s) to determine the robust stability of
the system.
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Ans. (a) characteristic equation = 53 + 1052 + 20s + 20, stable;
(b) characteristic equation = 55 + 11s* + 115> + 5052 + 80s +40,
unstable;
© M(s) = [20s>(1 + 5)1/(s> + 10s” + 20s + 20);
(d) system not robustly stable

10.6 Loop Transfer Recovery (LTR)

It was discussed earlier that the LQR solution has excellent stability margins (infinite
gain margin and 60° phase margin); we know that LQR is usually, but not always,
considered impractical because it requires that all states be available for feedback.
Doyle and Stein showed that under certain conditions, the LQG can asymptotically
recover the LQR properties. One of the problems with LQG is that it requires sta-
tistical information of the noise processes. In most cases, however, this information
is not available or is impractical to obtain. Mathematical arguments and simula-
tions had shown that the LQG design parameters (Q, R, Q,, and R,) have a strong
influence on the performance of the system. It was suggested that because @,, and
R, are not usually available, they should be used as tuning parameters to improve
system performance.

Consider the block diagrams in Figure 10.18. With the loop broken at the indicated
point, the (open) loop transfer function of the LQR is given by

L(S) = K@(J)B

Us) Us) . . X(s) . o

% <
(@
[5 |«
- GE) —

()
Figure 10.18 (a) Block diagram of an LQR controller. (b) Block diagram of an LQG controller.

LQR.
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where
B(s) = (s1 — A)!
The loop transfer function for LQG is likewise given by
LQG.

LTR assumptions.

L(s)=K(sI — A+ BK + LC)"'LC®(s)B
LOG

Under the following two conditions

G (s) is minimum-phase (i.e., it has no zeros in the RHP)
R,=1 and Q,=¢*BB

it can be shown that

lim L(s) = L(s)

g—>00 LQOG
The following procedure for design is suggested by the foregoing conditions. Choose
the LQR parameters such that the LQR loop transfer function (also called the target
feedback loop or TFL) has desirable time and/or frequency domain properties. Design
an observer with parameters specified in condition 2. Increase the tuning parameter
g until the resulting loop transfer function is as close as possible to the TFL.

In many situations, the variable that is measured is different from the variable
we want to control. For example, we may desire to control thrust in a jet engine, but
we can sense only temperature and turbine speed. Let y denote the measured states,
and z denote the controlled states, then

y=Cx and z=Cux
Because the loop transfer function of LQG approaches that of LQR, it will
asymptotically recover its properties. A more detailed procedure follows.
Loop Shaping Step
1. Determine the controlled variable and set
Q=CC o @=C0C,

2. Convert the design specifications into a desired TFL. At this stage, if the system is
type 0 and we want a type 1 system, we can add an integrator to the system.

3. Vary the parameter R until the resulting loop transfer function is similar to the
TFL. One may use the RSL approach here. Also, check the sensitivity and
complementary sensitivity transfer functions (S and 7), to make sure they have
desirable shapes.

Recovery Step

4. Select a scalar, g, and solve the filter Riccati equation

AT + XA +¢*BB - 3C'Cx =0 andsetL =XC’

Increase g until the resulting loop transfer function is close to the TFL.
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The higher the value of g, the closer the LQG system comes to LQR performance.
It should be noted that the value of g should not be increased indefinitely, because
this may lead to unreasonably large values for the filter gain L. Also, because LQR
has —20 dB slope at high frequencies, large values for g will also recover this slow
roll-off rate. Smaller values for g will tend to trade off lower stability margins with
higher roll-off rates at high frequencies.

We will now use LTR on the double-integrator system to recover the LQR
properties. Because LTR requires solving the Riccati equation a number of times,
the problem must be solved on the computer. First, we chose the LQR loop transfer
function as the TFL. Therefore, our objective is to recover the Bode plots shown in
Figure 10.1. We next let the parameter g vary over the range (1, 10, 100, 1,000). The
plots for the closed-loop step response and open-loop Bode plots for the LQR case
and LTR, for the specified values of g, are shown in Figure 10.19.

LTR solution of the double
integrator system.

60
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L. mag ]
8 ; uw A
-30
—60 "=:19|;' 3 <IT
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Figure 10.19 Stepresponse, Bode plots, and filter oples for LTR using g = (1, 10, 100, 1000).
(a) Closed-loop step response. (b) Open-loop magnitude Bode plot.(c) Open-loop phase Bode
plot. (d) Filter poles.
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Table 10.2 Results of LTR Design

q 1 10 | 100 | 1000
PM 32.6 419 55.0 61.7
GM 95 13.0 21.1 30.4
L 1.4 45 14.1 447
1.0 10.0 100.0 1000.0
Filter —0.7+0.7j —2.2+22j -7.0+7.0f —22.3 +22.3j
poles —-0.7-0.7j —22-22j —-7.0—17.0j —223—22.3j

Note how the step response approaches the LQR case for increasing values of
g. Also, as g increases, the low frequency gain of the system goes from 28 dB to
40 dB while the high frequency gain goes from —110 dB to —40. The values for
the filter gain L, its eigenvalues, and the stability margins (GM and PM) are given in
Table 10.2. The data show that the LQR phase margin is recovered. The gain margin
increases from 10 dB to 30 dB. This can clearly be increased by increasing . But note
that increasing the margins will cost us in terms of higher values for the filter gain L,
higher gain crossover frequency, and lower high-frequency gain. This will make the
system more sensitive to noise and uncertainties at high frequencies. It appears that
a value of ¢ between 100 to 1000 is a reasonable compromise.

Note that the procedure uses the machinery of LQG (i.e., two Riccati equations)
and its guaranteed stability. However, it allows us to work strictly with Bode plots
of various transfer functions and to satisfy frequency domain measures (similar to
classical control). Therefore, it can be considered a frequency domain design proce-
dure that uses state-space equations for computation. This is the common feature of
control system design after LQR/LQG, sometimes called postmodern control (i.e.,
frequency domain techniques that use state space machinery for computation).

Q DRILL PROBLEM
D10.5 Consider the following system:

x=Ax+Bu+tw
y=cx—+v

3] ] e

Let Q = E'E where E = 4+/5[ /35 1]
R=1

35
|:_611|[35 —61]

o

Q.

R, =
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(a) Find an LQR compensator H(s). Compute K, the closed-loop poles,
and the gain and phase margins.

(b) Design an LQG compensator. Compute the gain and phase margins in this
case. Compare with (a).

(c) Design an LTR compensator by solving the following Riccati equation:
AL +ZA +(0,+4¢°BB) - XC'Cz =0

Increase the value of g to 10 and observe the effects. Compute the gain and
phase margins for ¢ = 100.

Ans. (@)K =[50 10],-7+ j2, GM = oo, PM = 85°;
(b) PM < 15°, GM = 6.7 dB;
(c) PM = 74°, GM =37 dB

10.7 Hy Control

10.7.1 A Brief History

One of the major challenges in control has been the analysis and design of multi-
variable (multiple-input, multiple-output or MIMO) control systems. This is a difficult
problem, because the transfer function of a MIMO system is a matrix. Even very basic
concepts such as system order, poles, and zeros run into difficulty in this case. For
instance, there are at least five to ten different definitions of zeros of a multivariable
system! Successful concepts and tools of classical control such as root locus, Bode
plots, Nyquist stability criterion, and gain and phase margins ran into difficulty. State
space techniques, based in the time domain, avoided the complexities of transfer
function matrices and provided tools for analysis and design of MIMO systems.
Within the state space framework, the only difference between a SISO system and a
MIMO system is the number of columns of the B matrix (number of inputs) and the
number of rows in the C matrix (number of outputs). Note that in all the techniques
we have discussed, these dimensions play no part. In fact, the most important feature
of LQR/LQG is that they are systematic methods for designing MIMO systems.

At the about the same time that most researchers were developing, extending,
and refining time domain optimal control methods. Other researchers, mostly in
Britain, (A. G. J. MacFarlane and H. H. Rosenbrock), were busy extending clas-
sical control tools to the multivariable case. They were largely successful in these
endeavors. Classical tools such as root locus (renamed characteristic locus), Nyquist
techniques (renamed Nyquist arrays), and Bode plots (renamed singular value plots)
were extended to the multivariable case. As the shortcomings of LQG methods became
more apparent in the 1970s, more attention was paid to classical control concepts
and concerns.

During the 1980s a new paradigm emerged, H, control. This control problem
was first formulated by G. Zames. It was essentially a frequency domain optimization
method for designing robust control systems. Robustness became the main concern
in the control community, and other techniques for designing robust multivariable
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Measuring size of transfer
functions.

control systems soon followed. They are Hy, control, y synthesis (by J. Doyle,
also called k,, synthesis by M. Safonov), QFT (quantitative feedback theory) by
1. Horowitz, and methods based on Kharitonov’s theorem for structured uncertainty.
All these techniques are still being developed and refined today.

Our purpose in this section is to present a brief introduction to H,, control.
Although this is a powerful technique for the MIMO case, our presentation is limited
to the SISO case. The transition to the MIMO case is straightforward in theory but
not necessarily in practice.

10.7.2 Some Preliminaries

Hy, control has developed its own terminology, notation, and paradigm. For example,
the classical block diagram has been modified to handle problems of more general
types. Also, because the design equations are very lengthy, some shorthand notation
is introduced to simplify the presentation. Because these notations have become
standard in the literature, and because they could be confusing to the novice, we will
introduce and use them in this discussion to ease the transition to more advanced
books and the literature for the readers.

We first discuss the name. Hy, refers to the space of stable and proper transfer
functions. We generally desire that the closed-loop transfer functions be proper (i.e.,
the degree of the denominator 2> the degree of the numerator) and stable (poles strictly
in the LHP). Instead of repeating these requirements, we say G (s) is in Hy. The basic
object of interest in Ho, control is a transfer function. In fact, we will be optimizing
over the space of transfer functions. Optimization presupposes a cost (or objective)
function, because we want to compare different transfer functions and choose the best
one in the space. In Hy, control, we compare transfer functions according to their
H, norm (a mathematical term for the concept of size). The H, norm of a transfer
function is defined by

IGlloo = sup |G(jw)|

This is easy to compute graphically: it is simply the peak in the Bode magnitude
plot of the transfer function (it is finite when the transfer function is proper with no
imaginary poles). We have already seen this quantity before in the section on robust
stability. For instance, the multiplicative stability margin (MSM) can be written

1

MSM = ——
17 oo

As an example

1
.-
s+ 1],

In H,, control, the objective is to minimize the H,, norm of some transfer function,
so we will try to minimize the peak in the Bode magnitude plots.

A notation that is rapidly becoming popular is the packed-matrix notation for
representing transfer functions in state space. Recall that the transfer function of a
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system with state-space matrices {A, B, C, D} is given by
G(s)=C(sI—A)'B+D
This transfer function in packed-matrix notation is written
A B
G =
(s) c D ]

We emphasize that this is not a matrix in the ordinary sense; it is just a shorthand
notation for the foregoing expression for G(s). For example, the transfer function of
an LQG compensator, given in Section 10.4, can be expressed as follows:

A—-BK-LC L
H(s) = |_ | -|
L K | o]
The solution to the H,, control problem contains very messy Riccati equations,

so the following notation is introduced to simplify solution representation. Consider
the following Riccati equation:

AX+XA—XRX+0=0

The stabilizing solution of this equation will be denoted by X = Ric (H), where H
is the following Hamiltonian matrix:

H= [_3 __f,] and (A — RX) is stable
Instead of writing the Riccati equation, we will specify its associated Hamiltonian
matrix and the reader can create the appropriate Riccati equation.

Finally, we introduce a more general block diagram representation of control
systems shown in Figure 10.20. This new diagram is able to represent a variety
of problems of interest. The diagram contains two main blocks, the plant and the
controller. The plant section has two inputs and two outputs. The plant inputs are
classified as control inputs and exogenous inputs. The control input u is the output
of the controller, which becomes the input to the actuators driving the plant. The
exogenous input w is actually a collection of inputs (a vector). The main distinction
between w and u is that the controller cannot manipulate these exogenous inputs.
Typical inputs that are lumped into w are external disturbances, noise from the sensors,
and tracking or command signals.

The plant outputs are also categorized in two groups.The first group, y, are signals
that are measured and fed back. These become the inputs to the controller. The second
group, z, are the regulated outputs. These are all the signals we are interested to control
or regulate. They could be states, error signals, and control signals. Evenif the original

Figure 10.20 Generic block diagram for Hoo control.

u

K(s) |

New notation: packed-matrix.

The Ric notation.
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The linear fractional
transformation.

New plant representation.

system is SISO (i.e., # andy are scalars), the new formulation is essentially MIMO.
Most realistic control system problem formulations are of the MIMO kind.
A transfer function representation of the system is given by

2 =Ppyw + Pyu
y=Pp,w+ Pyu
u=Ky

(Note the change in notation: although the inputs and outputs are s-domain quan-
tities, we write them in lowercase letters and omit the dependency on s; as a rule we
will use lowercase italic letters for scalars and vectors, and capital letters for matrices
in our presentation.)

The closed-loop transfer function between the regulated outputs and the exoge-
nous inputs is obtained as follows. First, we substitute for u in the equation for y.

y=waw+PyuKy

then, we solve for y (note that all capital letters are matrices, so we have to use matrix
inversion and watch for the order of multiplication)

(I — PpuK)y = Pypyw — y = (I — Py, K)™' Pyw
Therefore, 1 becomes

u=Ky=K({ — PyuK)_leww
Substituting this into the equation for z, we get

7= Puw + PuK(I — Py K) ' Ppyw =[Py + P K(I — P K) ' Py lw
Finally

z="T, where Ty, = Py + PuK(I — Py, L) ' Py,

This expression for the closed-loop transfer function of P and X is called the linear
Jractional transformation.

The plant can also be represented in state-space form as follows:

X =Ax+Blw+Bzu

z=Cix + Dyyw+ Dpu

y = Cox + Dyyw + Dyu

Using the packed-matrix notation, we get

(a5 5]
Pisy=1|C D1 Dy
C, Dy Dy
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10.7.3 Hy, Control: Solution

The Hy control problem is formulated as follows. Consider the generic block diagram
in Figure 10.20 and find an internally stabilizing controller, X (s), for the plant P(s),
such that the infinity norm of the closed-loop transfer function, 7, is below a given
level y (a positive scalar). This problem is called the standard H, control problem.
The optimal Hy, control problem is
Optimal problem (s)m{}jmg 1 T2 lloo
Standard problemx(s)l:érg%zmg Trwlloo < ¥
The standard problem is more practical. In practice, control system design is more
like a balancing act and trade-offs, and a mathematically optimal solution may not be
so desirable after all the other real-life constraints have been taken into account. To
solve the optimal problem, we start with a value for y and reduce it until the problem
fails to have a solution. As a starting value for y, we can solve an LQG problem; find
the peak in the resulting closed-loop transfer function and use this value. To lower y,
we can use a search algorithm (such as a binary search) to reach the optimal value.
This procedure is called y-iteration.

For the problem to have a solution, certain assumptions must be satisfied. They
are listed below. The dimensions of various variables are listed first.

Dimensions: dimx = n, dimw = m;, dimu = mj,dimz = p;,dimy = p,

1. The pair (A, By) is stabilizable and (C,, A) is detectable. Recall from Chapter 8
that these are weaker versions of controllability and obsevability conditions. This
assumption is necessary for a stabilizing controller to exist. It simply guarantees
that the controller can reach all unstable states and these states show up on the
measurements.

2. Rank Dy = mgy, rankD,; = p,. These conditions are needed to ensure that the
controllers are proper. They also imply that the transfer function from w to y is
nonzero at high frequencies. Unlike the first assumption, which is usually satisfied,
this assumption is frequently violated (e.g., if the original plant is strictly proper:
i.e., if it has more poles than zeros, this condition will be violated) unless the
problem is formulated in a way that ensures its satisfaction.

3. Rank A-jol B = n + my for all frequencies.
Ci D2
— B
4. Rank A—jol "=n+ p-, for all frequencies.
&) Dy

5. D1y = 0 and Dy; = 0. This assumption is not needed, but it will simplify the
equations for the solution. It also implies that the transfer functions from w to z
and u to y roll off at high frequencies, respectively.

Before we present the solution, it should be pointed out that the solutions of the
H,, and LQG problems are very similar. Both use a state estimator and feed back
the estimated states. The controller and estimator gains are also computed from two

Hyo problem assumptions.
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And finally the solution.

The Riccati equations.

Riccati equations. The differences are in the coefficients of the Ricatti equations, and
the Ho, state estimator contains an extra term. The compensator equations follow.

The controller is given by, K corresponds to K, the controller gain, in the LQG
case

u=—-Kx
and the state estimator is given by

=A% + B+ Biid + ZooK(y — )
where

=y 2B Xook

§ = Caf +y DB Xk
We can also write this in packed-matrix notation as follows:

A— B2Kc - ZooKeCZ + )’_2(313{ - ZooKeDZIB;)Xoo|ZooKej|
—-K. | 0

K(s)=[

The extra term, i, is an estimate of the worst-case input disturbance to the system,
and § is the output of the estimator. The estimator gain is Z, K. (K. corresponds to
L in the LQG case). The controller gain K, and estimator gain K, are given by

Ko = D1p(B}Xoo + D},C1)  where Dip = (D)3 D)™

K. = (YChy+ B1Dy)Dy1  where Dy = (D Djy)~"
The term Z, is given by

Zoo = =¥ Yoo Xoo)™"

The terms X o and Y, are solutions to the controller and estimator Riccati equations—
that is,

X. — Ric A— Bz?]aD'izcl ]/_2B1Bi —"3251235
*® -C\¢ —(A — B,D1»,D},C})
v —Ric| A= B DyDnCy) y72CiC1—CiDuCy
* —B,B; —(A — B D Dy Cy)

where C1 = (I — Dy2D1,D',)Cy and By = Bi(I — Dy D2 Dyy).
The closed-loop system becomes

% A ~B:K, X
[ ] =| ZxK.C2 A—BK.+y B B{Xoo [ }

—ZoKo(C2+ 72Dy BjXo) | L*
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As we had promised, the equations are quite complicated and messy!

Finally, it can be proved that there exists a stabilizing compensator if and only
if there exist positive semidefinite solutions to the two Riccati equations and the
following condition:

P XeoYoo) < 72

where p(A) = spectral radius of A = largest eigenvalue of A = Apqax (A).

The block diagrams of the LQG and H,, control systems are shown in
Figure 10.21. Compare these diagrams to see the similarities and differences
between them.

It should be fairly obvious that H,, problems cannot be solved manually.
Computer programs such as Program CC, MATRIXx, and MATLAB have special
functions and utilities for solving these problems. For every value of y, two Riccati
equations must be solved. In addition, even if the plant is first-order, we still may need
to add weights to the system either to satisfy design requirements or to satisfy the
necessary assumptions for a feasible solution. This increases the order of the equa-
tions and makes manual solution almost impossible. The steps can be summarized as
follows.

1. Set up the problem to obtain the state space representation for P(s).

2. Check to see whether the assumptions (the rank conditions) are satisfied. If they
are not, reformulate the problem by adding weights or adding (fictitious) inputs
or outputs.

3. Select a large positive value of y.

4. Solve the two Riccati equations. Determine if the solutions are positive semidefinite;
also, verify that the spectral radius condition is met.

5. If all the conditions given are satisfied, lower the value of y. Otherwise, increase
it. Repeat steps 4 and 5 until either an optimal or satisfactory solution is obtained.

10.7.4 Weights in Hy, Control Problems

Practical control problems require weighting the inputs and outputs. There are a few
reasons for using weights. Constant weights are used for scaling inputs and outputs,
they are also used for unit conversions. Transfer function weights are used to shape the
various measures of performance in the frequency domain. In Hy, control problems,
weights are also used to satisfy the rank conditions. These assumptions are frequently
violated unless appropriate weights are selected. In fact, the weights are the only
parameters that the designer must specify. Proper selection of these weights depends
a great deal on the experience of the user and on his or her understanding of the
physics of the problem and other practical engineering constraints.

Tracking and disturbance rejection require that the sensitivity transfer function
be small in the low-frequency range. This can be formulated as specifying that the

Closed-loop system.

Solution procedure.
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w

Extra terms in Heo

Weights give us frequency
domain control over system
behavior.

Figure 10.21 (a) The LQG controller block diagram. (b) Block diagram showing the structure
of the Hy, control system.

sensitivity remain below a given frequency-dependent weight—that is,
IS|< Wt or [WSIK1

Similarly we can specify that the complementary sensitivity be kept below a given
weight in the high-frequency range—that is,

ITI< W' o |[WTIL]1

Finally, both requirements can be satisfied by solving what is called the mixed-
sensitivity problem. Typical plots for both cases including weights are shown in
Figure 10.22.

As an example, we will use the Hy approach to design a controller for the
double-integrator system. The first step is setting up the problem appropriately. The
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L.W,

(@) ®)

Figure 10.22 (a) Plot of sensitivity function and its weight. (b) Plot of the complementary
sensitivity and its corresponding weight.

plant equations are given by
x1=d+u
X2 =x]
The new term that we have added is the disturbance term, d; this term corresponds

either to an actual disturbance or to unmodeled dynamics in the system. The regulated
outputs are given by

=[]
i
It is important that the control signal be included in the regulated outputs so that we

can bound its magnitude. This is also needed to ensure that the rank condition on Dy,
is satisfied. The measurement equation is given by

y=x2+n

The noise term, n, is either actual sensor noise or, perhaps, it represents high-frequency
unmodeled dynamics. It is also needed to ensure that the rank condition on Dy is
met. Collecting these equations, we obtain the system equations in packed-matrix
notation as follows:

00| 1011

[A]| B B] [10‘0050_1
P&O)=|C | Dy Dpl|l=[0 100! 0
[Cz Dy D22J 00 00! 1
01010

The block diagram of the system is shown in Figure 10.23 in the usual form and in
the generic Hy, form.

Hoo solution of the
double-integrator.
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The Hy compensator. Looks
like a lead plus an extra
pole.

(@) ®

Figure 10.23 (a) The block diagram for the double-integrator system. (b) The generic Hoo
block system.

This problem was solved on the computer, and after several trials we found that
the value of ¥ could not be reduced below 2.62. Hence, we conclude that 2.62 is
the optimal value (note that the solution of the optimal Hy, control problem involves
a search over y and we can get as close to it as possible but not achieve it). The
following are the relevant data obtained:

y =2.62 Xm:[l-” 1-08] Ym=[1.47 1.08:|

1.08 1.47 1.08 1.59
1.08
K.=[159 1.08] K.=
1.59

The transfer function of the compensator and the resulting closed-loop poles are
given by

—578.3(s + 0.39)
(s +2.33)(s +220.72)

Closed-loop poles = {—0.71, —0.81 £ 0.91, —200.7}

The Bode and Nyquist plots of the system are shown in Figure 10.24(a, b). We have
obtained a gain margin of 44 dB and phase margin of 45°. The responses of the system
to a unit-pulse disturbance and random sensor noise also is shown in Figure 10.24 (c).
As expected, both responses approach zero asymptotically.

We will end our brief introduction to Hy, control at this point. We point out
that this subject is still very novel and is rapidly progressing. We have also limited
our discussion to the treatment of unstructured uncertainty and have presented only
one of the approaches to robust control. The different approaches, however, have
one feature in common: They are all frequency domain, computer-assisted tools for

K@) =
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Figure 10.24 (a) The Nyquist plot of the Hy, compensated system. (b) The Bode plots of the

system. (c) Unit pulse, random noise, and plant response to these inputs.
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design of MIMO systems satisfying practical constraints. For this reason, H, control
is expected to find a permanent place in the control engineer’s toolbox.

Q DRILL PROBLEMS
D10.6 (Note: As much as possible, try to solve this problem manually.) Consider

the first-order system given by
x=x+u-+d
y=x-+n

Our objective is to regulate the state and control signals (x, #) in presence of
disturbance and noise inputs (d, n).

T

(a) Obtain the plant equation, P(s), in packed-matrix notation.

(b) Draw the generic Hy, block diagram of the system.

(c) Verify that all the rank conditions are met.

(d) Compute l~)12' Dzl,él, B.

(e) Find the controller Hamiltonian matrix and solve for X oo in terms of y.
(f) Repeat (e) for the estimator, and solve for Y.

(g) Compute (X0Yo) in terms of . Find out if the spectral radius condition
is met for y = 2. Repeat for y = 3.

For the rest of the drill, let y = 3.
(h) Compute Xoo, Yoo, Zoo, Ke, K.
(i) Find the compensator transfer function and the closed-loop poles.
(j) Draw the Nyquist plot and obtain gain and phase margins.

Ans.

@ i=x+[1 Olw+u

o O -

—
[
—_
<

y=x4+[0 1w
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(b)

©)

(d)

(€)

®
®

(h)
®
®

(=

0
Rank Dy, =rank [1] =1, rank Dy; =rank [0 1]=1,

A—ja) Bz
D1 =0,Dp =0 ank
11 22 I l: C DIZ:I
[ jo-1 1
= rank 1 0)]=2 for all w mnk[
1

A-jo B
C; 15

1 01

o
— rank | 7% L 0]=2 for all

1 y2-1|  —y*—yy/2y2-1
-1 -1 |~

Yoo = X for this problem
Xeo¥oo = 1/(L = Y22 y* +y2(2y> = 1)+ 2%/277 — 1|

fory =2, XY > 4, violated
fory =3, X0 Yoo < 9, satisfied

Xoo = Yoo = 2.67, Zoo = 4.82, K, = K, = 2.67
K(s) = —34.43 1/ (s + 14.26), poles at s = —1.75, —11.51

phase margin= 56.5°, infinite gain margin
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10.8 SUMMARY

1.5
1k
051
ol
-0.5
-1k
1
-2 -1 0 1
Figure D10.6)

Linear quadratic methods for control system design have been discussed. These tech-
niques lead to linear controllers that are easy to implement. Another important feature
is guaranteed closed-loop stability. The LQR technique requires that all states be
available for measurement. If the system is controllable (or at least stabilizable),
this method gives excellent stability margins. The guaranteed margins are 60° phase
margin, infinite gain margin, and—6 dB gain reduction margin. The design involves
selection of the state and control weights, Q and R matrices, and solution of the Riccati
equation. This can be also accomplished by using the root-square locus approach.

If all the states are not available for feedback, a Kalman filter (observer or estima-
tor) can be designed. The combination of the filter and the LQ controller is called the
LQG compensator. The design starts with selection of the state control weights Q and
R, selection (or determination) of the process and measurement noise intensities, and
solution of two Riccati equations. The compensator structure is of the observer-based
type seen in Chapter 9, and the solution satisfies the separation principle. Although the
closed-loop system is guaranteed to be stable, it will have no guaranteed stability mar-
gins. The design requires perfect knowledge of the system model and consequently
is not robust.

Feedback properties of systems can be adequately characterized by the sensitivity
or complementary sensitivity transfer functions. Performance specifications impose
bounds of the open-loop transfer function of the system in various frequency ranges.
Stability or performance of a system is robust if it is maintained in spite of model
uncertainty. Model uncertainty can be modeled as either structured or unstructured
uncertainty. Unstructured uncertainty can be modeled as either additive or multiplica-
tive uncertainty. The small-gain theorem can be used to determine if the system is
robustly stable under model uncertainties.

Loop transfer recovery (LTR) is a modification of the LQG technique; it allows
recovery of the LQR stability margins. One begins with selection the LQR parameters
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until a desired open-loop transfer function (the target feedback loop) is obtained. The
recovery step involves iterating on the filter design parameters until the desired loop
transfer function shape has been obtained. The LTR methodology converts the LQG
technique from a rigid time domain method to a flexible frequency domain design
technique. The computations are still based on state space techniques, but they can
remain hidden from the user.

Hy, control is the newest tool for control-system design. It is a computer-aided
frequency domain method for design of multivariable systems. The exogenous inputs
(disturbances, command inputs, sensor noise) are collected into onc vector; the regu-
lated outputs (control signals, errors) are collected into another vector. This will result
in a dual-input, dual-output block diagram, called the generic (or synthesis) block dia-
gram. The objective is to maintain the peak in the closed-loop frequency response
of the system below a specified level y. The optimal problem can be solved by iter-
ation on y. The solution involves selecting weights (possibly frequency-dependent
weights) and solving two Riccati equations. The compensator structure is similar to
LQG with some added terms. It can be shown that if the value of y is allowed to go
to infinity, the solution approaches the LQG solution.
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1. For each of the following systems, obtain the optimal control gain using LQR by
solving the Riccati equation.
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- i
0 1 [ o 10
(a A= ,B= 3:|,Q=l: 0

—4 —4] 3 01
[0 1] [0 10

A= .B=| |, 0= JR,=1
© 4 —4 3] Q [0 1]

Ans. (2) K =1[0.33 0.08]
2. Obtain the root-square locus in each case for Problem 1. Let R = p

3. Obtain the root-square locus for each of the following systems.

0 1 0 1 0

(b) same system as (a) butlet Q = l:(l) (1) ,R=p

01 1 10
o s=[ 2 Jo-[ - -

4. Use the Riccati equation to solve Problem 3. Find the gain for p = 0.1, 1, 10
in each case.

5. Obtain the compensator transfer function, draw Bode plots, and compute gain
and phase margins for each system in Problem 1.

LetC =[1 0]in each case.
6. Consider the system given by

01 0 1 0
A= ,B= = R=1
Find the optimal control gain and the closed-loop poles as a function of g. Discuss
what happeris to these quantities as g increases (g > 0).

7. Consider the following system:

0 1t 00 0
0 -1 00 1 1 000
0 0 01 0 [—1 0 1 0:|

-12 0 12 0 0

0 0 00

0000 »

Let Q0 = 001 0 R=10
0 00O



726 ADVANCED STATE SPACE METHODS

(a) Find the control gain vector K and the optimal closed-loop poles

0 0 00
0 050 0 2%10°6 0
b Lt =5 dR0=
® Let Q=14 o o o™ [ 010—6]
0 0 00

Design a Kalman filter. Find the filter gain L and filter eigenvalues.
(c) Find the equation for the LQG compensator of (a) and (b).
(d) Find the eigenvalues of the closed-loop system.

(e) Plot the impulse and step response of the system.

8. Consider the system given by

[ 54 2 10
A=|2x10% —-103 —5x103
L —102 -—24x10"% —0.14
[ —10*
B=|025]| c=[0 3 0.05]
-2

The open-loop transfer function must meet the following specification:

(1) [GH| > 20dB for w < 0.1 rad/s

for good disturbance rejection and command tracking.
(ii) |1+ GH| = 25 dB forw < 0.05rad/s

for insensitivity to parameter variations.
(iii) |GH| € —20 dB for @ = 5 rads

for good immunity to noise.

(a) Design an LQG compensator and record its performance with respect to the
foregoing specifications.

(b) Use LTR to meet the specification as closely as possible.

9. Consider the problem in Drill Problem D10.4.

2005 + 1)

1
G =5 HO=""1

Suppose the actual plant is given by

5 . 2s+1)
GO = Fitrs+D



PROBLEMS

727

10.

(a) Find a multiplicative uncertainty model for the system.
(b) Find M(s), the transfer function as seen by the multiplicative uncertainty.

(c) Determine if the closed-loop system is robustly stable under the multiplica-
tive uncertainty computed in (a).

Ans. (@) Ap(s) =(—s2+s5+1)/(+s5+1);
(B) M(s) = —20(s + 1)/(s> + 10s* + 20s + 20)

This problem is adapted from a paper by W. S. Levine and R. T. Reichert
(Proceedings of Conference on Decision and Control, December, 1990).

Figure P10.10

Consider the single-input, dual output plant, in Figure P10.10(a). where u =
control, d = disturbance, n; and n, = sensor noise sources. The specifications
are to have integral tracking performance for output y; with a time constant of
0.6 s. The second output y,, is also available for feedback.

It has been suggested that for integral tracking, one should regulate the inte-
gral of the tracking error. Hence, we will introduce a command input y,, and an
integrator at y; — y.(before the entry of the noise source 7).

In addition, all regulated outputs and disturbance and noise inputs will
be weighted. The new block diagram is shown in Figure P10.10 (b).

The following weights are suggested: W; = 0.1, W,; = W, =1, W, =
0.5, w, =1.

(By varying these weights, one can manipulate the performance of the
system).
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A 4

Error

+Y

l g—><>—»—>y1
s X3 +

Y2

K(s)

Figure P10.10

(a) Verify that the plant equations are given by
%1 = —14x; 4+ 100x3 + 0.14 + 100u
X2 =x

X3 =—102 + ¥,

|:0.5x3 }
=
u

y= X3+ ny
x1+5x2 +no

(b) Obtain the plant matrix P(s).

(¢) Foravalueofy = 0.5922 (optimal value obtained by computer) find X, K.,
and the compensator transfer function.

(d) Draw the Nyquist plot, and compute the stability margins.

(e) Plot the unit step response of the system (set all inputs to zero and let y, = 1,
then plot y;).

(f) Use y-iteration to verify that the y = 0.5922 is optimal.
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—14 100 0| 0 01 0 0 {1007

1 0 0[]0 000 | 0

0 -10 0|1 000 ! ©

Ams. (b) P(s) = 0 0050 00O ! O
0 0 0|0 000 1

0 0 10 o010 i 0

| 15 0[]0 001 O]

Note: The (1, 3) element of C; is incorrect in the original source.
© K.=[014 3 -0.52]

—-0.89 526
K. =|-0.17 1.01
2.16 -1.76
1
K(s) = [(s +3.6)(s +19.2)

(s +4.9)(s —16.6)(s + 318.2)

(s +0.5)(s + 19.2)]
(d) PM=51,GM = —55.

T

.0 !
0 03 06 09 1.2 1.5 1.8 21 24 27 3
Time ~—
1.5
1._
0.5
o ta
-0.5
-1k
1

-2 -1 0 1

Figure P10.10
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11. Consider the plant given by G(s) = (s—1)/[(s+1)(s®4+s+1)]. The specification
is [S(fw)| < 0.1 for w < 0.01 rad/s. This is a sensitivity minimization problem.
The requirement means that we want to reject low-frequency disturbances (or
equivalently, to reduce the system sensitivity to parameters variations or model
uncertainties). To set up the problem for H,, consider Figure P10.11(a).

(a)

Figure P10.11

The transfer function from disturbance d to error e is given by

E(s) 1 —5
D(s) 1+GH

Now, we redraw the diagram as in Figure P 10.11(b). (We have changed the
notation to correspond to Section 10.7.)

Obtain the system matrix, P(s), and use y-iteration to solve the problem.
Plot the sensitivity, S(jw), and vary y until the specification is met. For the final
design, display |S(jw)|, the compensator transfer function K (s), and the step
response of the system.

P(s)

+R,

e T

®

Figure P10.11
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12. Consider the H,, set up in Figure P10.12.

1
Gl = 0y
V=6 + 10092
w z

Figure P10.12

The objective is to minimize [|7,||,,. This corresponds to minimizing the
effects of the disturbance w. Note that the transfer function from w to e, is the
sensitivity weighted by W, and the transfer function from w to e; is related to
the ASM (Section 10.5).

ey 1 3] —-K
== W, —=—"1-W
w 1+KG ° w 1+KG *“

Hence by reducing the [le;/w||o0, We are also increasing the additive stability
margin.
Let
1
Wy=—""-——=
T (s +1073)2

and

1 Case I
W = [ 107* Case Il

Find the Hy, optimal compensator in each case. In each case display the Bode
magnitude plot for GK, S, and T. Also give the optimal value of y. Discuss the
effects of the weight W, and compare the two cases.



732 ADVANCED STATE SPACE METHODS

13. Repeat Problem 12 for G(s) = (s — 1)/[(s + D)(s + 10732,

1
- Case I
\ (s + 19—3)124 1 ase
w, =10~ W, = 5“4+ 1.4s + Case I
G102 +103s) ¢
1 Case III

14. It is possible to use the Nyquist plot and some geometry to obtain formu-
las for gain and phase margins in terms of return difference and sensitivity.

Triangle

Figure P10.14

In Figure P10.14, if
J(w) =1+ G(jw) = return difference
and

1
S(jw) = m = sensitivity

use the figure as a hint to show that

I (jwge)
2

PM =2sin”! W, = gain crossover frequency

1
GM=-201og(1 — ———
g( |suw)|)

1
2|S(jow)l
Tabulate |S(jw)|, GM, PM for |S(jw)| from 1 to 3 in 0.2 increments. [Note:
for | S| = 1, we get LQR stability margins.]

PM = 2sin~!



